All the material is licensed under Creative Commons Attribution 3.0 Unported (CC-BY 3.0) and you are free to use it under that license.
Please note that the on-line activities that are part of the course are only available when the course is running and are not included below.
| Class | ||
| Trailer | en | |
| 1 | Getting started with Weka | en |
| 2 | Evaluation | en |
| 3 | Simple classifiers | en |
| 4 | More classifiers | en |
| 5 | Putting it all together | en |
| Class | Lesson | YouTube | Youku | ||
| Trailer | en | en zh | |||
| 1 | Getting started with Weka | 1 | Introduction | en | en |
| 2 | Exploring the Explorer | en | en | ||
| 3 | Exploring datasets | en | en | ||
| 4 | Building a classifier | en | en | ||
| 5 | Using a filter | en | en | ||
| 6 | Visualizing your data | en | en | ||
| 2 | Evaluation | 1 | Be a classifier! | en | en |
| 2 | Training and testing | en | en | ||
| 3 | Repeated training and testing | en | en | ||
| 4 | Baseline accuracy | en | en | ||
| 5 | Cross-validation | en | en | ||
| 6 | Cross-validation results | en | en | ||
| 3 | Simple classifiers | 1 | Simplicity first | en | en |
| 2 | Overfitting | en | en | ||
| 3 | Using probabilities | en | en | ||
| 4 | Decision trees | en | en | ||
| 5 | Pruning decision trees | en | en | ||
| 6 | Nearest neighbor | en | en | ||
| Q | Questions answered | en | |||
| 4 | More classifiers | 1 | Classification boundaries | en | en |
| 2 | Linear regression | en | en | ||
| 3 | Classification by regression | en | en | ||
| 4 | Logistic regression | en | en | ||
| 5 | Support vector machines | en | en | ||
| 6 | Ensemble learning | en | en | ||
| 5 | Putting it all together | 1 | The data mining process | en | en |
| 2 | Pitfalls and pratfalls | en | en | ||
| 3 | Data mining and ethics | en | en | ||
| 4 | Summary | en | en | ||
| Class | Lesson | |||
| Trailer | en zh | |||
| 1 | Getting started with Weka | 1 | Introduction | en zh |
| 2 | Exploring the Explorer | en zh | ||
| 3 | Exploring datasets | en zh | ||
| 4 | Building a classifier | en zh | ||
| 5 | Using a filter | en zh | ||
| 6 | Visualizing your data | en zh | ||
| Q | Questions answered | en | ||
| 2 | Evaluation | 1 | Be a classifier! | en zh |
| 2 | Training and testing | en zh | ||
| 3 | Repeated training and testing | en zh | ||
| 4 | Baseline accuracy | en zh | ||
| 5 | Cross-validation | en zh | ||
| 6 | Cross-validation results | en zh | ||
| Q | Questions answered | en | ||
| 3 | Simple classifiers | 1 | Simplicity first | en zh |
| 2 | Overfitting | en zh | ||
| 3 | Using probabilities | en zh | ||
| 4 | Decision trees | en zh | ||
| 5 | Pruning decision trees | en zh | ||
| 6 | Nearest neighbor | en zh | ||
| Q | Questions answered | en | ||
| 4 | More classifiers | 1 | Classification boundaries | en zh |
| 2 | Linear regression | en zh | ||
| 3 | Classification by regression | en zh | ||
| 4 | Logistic regression | en zh | ||
| 5 | Support vector machines | en zh | ||
| 6 | Ensemble learning | en zh | ||
| Q | Questions answered | en | ||
| 5 | Putting it all together | 1 | The data mining process | en zh |
| 2 | Pitfalls and pratfalls | en zh | ||
| 3 | Data mining and ethics | en zh | ||
| 4 | Summary | en zh | ||
| Class | Lesson | |||
| 1 | Getting started with Weka | 1 | Introduction | en |
| 2 | Exploring the Explorer | en | ||
| 3 | Exploring datasets | en | ||
| 4 | Building a classifier | en | ||
| 5 | Using a filter | en | ||
| 6 | Visualizing your data | en | ||
| Q | Questions answered | en | ||
| 2 | Evaluation | 1 | Be a classifier! | en |
| 2 | Training and testing | en | ||
| 3 | Repeated training and testing | en | ||
| 4 | Baseline accuracy | en | ||
| 5 | Cross-validation | en | ||
| 6 | Cross-validation results | en | ||
| Q | Questions answered | en | ||
| 3 | Simple classifiers | 1 | Simplicity first | en |
| 2 | Overfitting | en | ||
| 3 | Using probabilities | en | ||
| 4 | Decision trees | en | ||
| 5 | Pruning decision trees | en | ||
| 6 | Nearest neighbor | en | ||
| Q | Questions answered | en | ||
| 4 | More classifiers | 1 | Classification boundaries | en |
| 2 | Linear regression | en | ||
| 3 | Classification by regression | en | ||
| 4 | Logistic regression | en | ||
| 5 | Support vector machines | en | ||
| 6 | Ensemble learning | en | ||
| Q | Questions answered | en | ||
| 5 | Putting it all together | 1 | The data mining process | en |
| 2 | Pitfalls and pratfalls | en | ||
| 3 | Data mining and ethics | en | ||
| 4 | Summary | en | ||