

Data Mining with Weka

Class 3 – Lesson 1

Simplicity first!

Ian H. Witten

Department of Computer Science University of Waikato New Zealand

weka.waikato.ac.nz

Simple algorithms often work very well!

- There are many kinds of simple structure, eg:
 - One attribute does all the work Lessons 3.1, 3.2
 - Attributes contribute equally and independently Lesson 3.3
 - A decision tree that tests a few attributes Lessons 3.4, 3.5
 - Calculate distance from training instances Lesson 3.6
 - Result depends on a linear combination of attributes Class 4
- Success of method depends on the domain
 - Data mining is an experimental science

OneR: One attribute does all the work

- Learn a 1-level "decision tree"
 - *i.e., rules that all test one particular attribute*
- Basic version
 - One branch for each value
 - Each branch assigns most frequent class
 - Error rate: proportion of instances that don't belong to the majority class of their corresponding branch
 - Choose attribute with smallest error rate

For each attribute,
For each value of the attribute,
make a rule as follows:
 count how often each class appears
 find the most frequent class
 make the rule assign that class
 to this attribute-value
 Calculate the error rate of this attribute's rules
 Choose the attribute with the smallest error rate

Outlook	Temp	Humidity	Wind	Play
Sunny	Hot	High	False	No
Sunny	Hot	High	True	No
Overcast	Hot	High	False	Yes
Rainy	Mild	High	False	Yes
Rainy	Cool	Normal	False	Yes
Rainy	Cool	Normal	True	No
Overcast	Cool	Normal	True	Yes
Sunny	Mild	High	False	No
Sunny	Cool	Normal	False	Yes
Rainy	Mild	Normal	False	Yes
Sunny	Mild	Normal	True	Yes
Overcast	Mild	High	True	Yes
Overcast	Hot	Normal	False	Yes
Rainy	Mild	High	True	No

Attribute	Rules	Errors	Total errors
Outlook	$Sunny \to No$	2/5	4/14
	$Overcast \to Yes$	0/4	
	Rainy \rightarrow Yes	2/5	
Temp	$Hot\toNo^*$	2/4	5/14
	$Mild \to Yes$	2/6	
	$Cool \to Yes$	1/4	
Humidity	$High \to No$	3/7	4/14
	Normal \rightarrow Yes	1/7	
Wind	$False \to Yes$	2/8	5/14
	$True \to No^*$	3/6	

* indicates a tie

Use OneR

- Open file weather.nominal.arff
- Choose OneR rule learner (rules>OneR)
- Look at the rule (note: Weka runs OneR 11 times)

OneR: One attribute does all the work

Incredibly simple method, described in 1993

"Very Simple Classification Rules Perform Well on Most Commonly Used Datasets"

- Experimental evaluation on 16 datasets
- Used cross-validation
- Simple rules often outperformed far more complex methods
- ✤ How can it work so well?
 - some datasets really are simple

Course text

Section 4.1 Inferring rudimentary rules

Rob Holte, Alberta, Canada

Data Mining with Weka

Class 3 – Lesson 2

Overfitting

Ian H. Witten

Department of Computer Science University of Waikato New Zealand

weka.waikato.ac.nz

- Any machine learning method may "overfit" the training data ...
 ... by producing a classifier that fits the training data too tightly
- Works well on training data but not on independent test data
- Remember the "User classifier"? Imagine tediously putting a tiny circle around every single training data point
- Overfitting is a general problem
- ✤ ... we illustrate it with OneR

Numeric attributes

Outlook	Temp	Humidity	Wind	Play
Sunny	85	85	False	No
Sunny	80	90	True	No
Overcast	83	86	False	Yes
Rainy	75	80	False	Yes

Attribute	Rules	Errors	Total errors
Temp	$85 \rightarrow No$	0/1	0/14
	$80 \rightarrow \text{Yes}$	0/1	
	$83 \rightarrow Yes$	0/1	
	$75 \rightarrow No$	0/1	

- OneR has a parameter that limits the complexity of such rules
- How exactly does it work? Not so important ...

Experiment with OneR

- Open file weather.numeric.arff
- Choose OneR rule learner (rules>OneR)
- Resulting rule is based on outlook attribute, so remove outlook
- Rule is based on humidity attribute

humidity: < 82.5 -> yes >= 82.5 -> no (10/14 instances correct)

Experiment with diabetes dataset

- Open file diabetes.arff
- Choose ZeroR rule learner (rules>ZeroR)
- ✤ Use cross-validation: 65.1%
- Choose OneR rule learner (rules>OneR)
- Use cross-validation: 72.1%
- Look at the rule (plas = plasma glucose concentration)
- Change minBucketSize parameter to 1: 54.9%
- Evaluate on training set: 86.6%
- Look at rule again

- Overfitting is a general phenomenon that plagues all ML methods
- One reason why you must never evaluate on the training set
- Overfitting can occur more generally
- E.g try many ML methods, choose the best for your data
 - you cannot expect to get the same performance on new test data
- Divide data into training, test, validation sets?

Course text

Section 4.1 Inferring rudimentary rules

Data Mining with Weka

Class 3 – Lesson 3

Using probabilities

lan H. Witten

Department of Computer Science University of Waikato New Zealand

weka.waikato.ac.nz

(OneR: One attribute does all the work)

Opposite strategy: use *all* the attributes "Naïve Bayes" method

- Two assumptions: Attributes are
 - equally important a priori
 - statistically independent (given the class value)

i.e., knowing the value of one attribute says nothing about the value of another (*if the class is known*)

- Independence assumption is never correct!
- But ... often works well in practice

Probability of event H given evidence E

- Pr[H] is a priori probability of H
 - Probability of event before evidence is seen
- Pr[H | E] is a posteriori probability of H
 - Probability of event after evidence is seen
- "Naïve" assumption:
 - Evidence splits into parts that are independent

 $\Pr[H | E] = \frac{\Pr[E_1 | H] \Pr[E_2 | H] \dots \Pr[E_n | H] \Pr[H]}{\Pr[E]}$

Thomas Bayes, British mathematician, 1702–1761

Out	look		Temperature			Hur	nidity	Humidity		Wind	Wind		ay		
	Yes	No		Yes	No		Yes	No		Yes	No	Yes	No		
Sunny	2	3	Hot	2	2	High	3	4	False	6	2	9	5		
Overcast	4	0	Mild	4	2	Normal	6	1	True	3	3				
Rainy	3	2	Cool	3	1										
Sunny	2/9	3/5	Hot	2/9	2/5	High	3/9	4/5	False	6/9	2/5	9/14	5/14		
Overcast	4/9	0/5	Mild	4/9	2/5	Normal	6/9	1/5	True	<u>3/0</u>	3/5				
Bainy	3/9	2/5	Cool	3/9	1/5					Ou	tlook	Temp	Humidity	Wind	Play
Rainy	3/9	2/5	Cool	3/9	1/5					Su	nny	Hot	High	False	No
			-			-				Su	nny	Hot	High	True	No
										Ov	ercast	Hot	High	False	Yes
										Ra	iny	Mild	High	False	Yes
										Ra Ra		Mild Cool	High Normal	False False	Yes Yes
	ן	$\Pr[F]$. H]	Pr[E	[] H	$\dots \Pr[F]$	H	Pr[A	71		iny		-		
Pr[<i>H</i> <i>E</i>	[2] = -	Pr[<i>E</i>	$_{1} H]$	Pr[<i>E</i>	$\begin{bmatrix} & & \\ & & \end{bmatrix} H$	$\dots \Pr[E_n]$	H]	Pr[<i>H</i>	<u> </u>	Ra Ra	iny	Cool	Normal	False	Yes
Pr[<i>H</i> <i>E</i>	$[] = -\frac{1}{2}$	Pr[<i>E</i>	$_{1} H]$	Pr[<i>E</i>	$\frac{1}{2} H]$ Pr[.	$\frac{\dots \Pr[E_n}{E}]$	H]	Pr[<i>F</i>	<u> </u>	Ra Ra Ov	iny iny	Cool Cool	Normal Normal	False True	Yes No
Pr[<i>H</i> <i>E</i>	[] = -	Pr[<i>E</i>	$_{1} H]$	Pr[<i>E</i>	$\frac{1}{2} H]$ Pr[.	$\frac{\dots \Pr[E_n}{E}]$	<i>H</i>]	Pr[<i>F</i>	<u> </u>	Ra Ra Ov Su	iny iny ercast	Cool Cool Cool	Normal Normal Normal	False True True	Yes No Yes
Pr[<i>H</i> <i>E</i>	$\begin{bmatrix} z \end{bmatrix} = \frac{1}{z}$	Pr[<i>E</i>	$_{1} H]$	Pr[<i>E</i>	$\frac{1}{2} H]$ Pr[1	$\frac{\dots \Pr[E_n}{E}]$	<i>H</i>]	Pr[<i>P</i>	<u> </u>	Ra Ra Ov Su	iny iny ercast nny nny	Cool Cool Cool Mild	Normal Normal Normal High	False True True False	Yes No Yes No
Pr[<i>H</i> <i>E</i>	$[3] = -\frac{1}{3}$	Pr[<i>E</i>	$_{1} H]$	Pr[<i>E</i>	$\frac{1}{2} H]$ Pr[.	Pr[<i>E_n</i> <i>E</i>]	<i>H</i>]	Pr[<i>H</i>	<u> </u>	Ra Ra Ov Su Su Ra	iny iny ercast nny nny	Cool Cool Cool Mild Cool	Normal Normal Normal High Normal	False True True False False	Yes No Yes No Yes

Overcast

Rainy

Hot

Mild

Normal

High

False

True

Yes

No

Out	Outlook Temperature				Humidity			_	Wind			Play	
	Yes	No		Yes	No		Yes	No		Yes	No	Yes	No
Sunny	2	3	Hot	2	2	High	3	4	False	6	2	9	5
Overcast	4	0	Mild	4	2	Normal	6	1	True	3	3		
Rainy	3	2	Cool	3	1								
Sunny	2/9	3/5	Hot	2/9	2/5	High	3/9	4/5	False	6/9	2/5	9/14	5/14
Overcast	4/9	0/5	Mild	4/9	2/5	Normal	6/9	1/5	True	3/9	3/5		
Rainy	3/9	2/5	Cool	3/9	1/5								

A new day:

	Sunny
	Likelihoo
$\Pr[H \mid E] = \frac{\Pr[E_1 \mid H] \Pr[E_2 \mid H] \dots \Pr[E_n \mid H] \Pr[H]}{\Pr[E_1 \mid H] \Pr[H]}$	For "
$\Pr[T] =$	For "

Likelihood of the two classes

Temp.

Cool

Outlook

For "yes" = $2/9 \times 3/9 \times 3/9 \times 3/9 \times 9/14 = 0.0053$

Humidity

High

Play

?

Wind

True

For "no" = $3/5 \times 1/ \times 4/5 \times 3/5 \times 5/14 = 0.0206$

Conversion into a probability by normalization:

P("yes") = 0.0053 / (0.0053 + 0.0206) = 0.205

P("no") = 0.0206 / (0.0053 + 0.0206) = 0.795

Ou	ıtlook	Temp.	Humidity	Wind	Play	<i>Evidence E</i>
S	unny	Cool	High	True	?	

Use Naïve Bayes

- Open file weather.nominal.arff
- Choose Naïve Bayes method (bayes>NaiveBayes)
- Look at the classifier
- Avoid zero frequencies: start all counts at 1

- "Naïve Bayes": all attributes contribute equally and independently
- Works surprisingly well
 - even if independence assumption is clearly violated
- ✤ Why?
 - classification doesn't need accurate probability estimates
 - so long as the greatest probability is assigned to the correct class
- Adding redundant attributes causes problems

(e.g. identical attributes) \rightarrow attribute selection

Course text

Section 4.2 Statistical modeling

Data Mining with Weka

Class 3 – Lesson 4

Decision trees

Ian H. Witten

Department of Computer Science University of Waikato New Zealand

weka.waikato.ac.nz

Top-down: recursive *divide-and-conquer*

- Select attribute for root node
 - Create branch for each possible attribute value
- Split instances into subsets
 - One for each branch extending from the node
- Repeat recursively for each branch
 - using only instances that reach the branch
- Stop
 - *if all instances have the same class*

Which attribute to select?

Which is the best attribute?

- ✤ Aim: to get the smallest tree
- Heuristic
 - choose the attribute that produces the "purest" nodes
 - I.e. the greatest information gain
- Information theory: measure information in bits

entropy
$$(p_1, p_2, ..., p_n) = -p_1 \log p_1 - p_2 \log p_2 ... - p_n \log p_n$$

Information gain

- Amount of information gained by knowing the value of the attribute
- (Entropy of distribution before the split) (entropy of distribution after it)

Claude Shannon, American mathematician and scientist 1916–2001

Which attribute to select?

Continue to split ...

gain(temperature)= 0.571 bitsgain(windy)= 0.020 bitsgain(humidity)= 0.971 bits

Use J48 on the weather data

- Open file weather.nominal.arff
- Choose J48 decision tree learner (trees>J48)
- Look at the tree
- Use right-click menu to visualize the tree

✤ J48: "top-down induction of decision trees"

- Soundly based in information theory
- Produces a tree that people can understand
- Many different criteria for attribute selection
 - rarely make a large difference
- Needs further modification to be useful in practice (next lesson)

Course text

Section 4.3 *Divide-and-conquer: Constructing decision trees*

Data Mining with Weka

Class 3 – Lesson 5

Pruning decision trees

Ian H. Witten

Department of Computer Science University of Waikato New Zealand

weka.waikato.ac.nz

Lesson 3.5 Pruning decision trees

Lesson 3.5 Pruning decision trees

Highly branching attributes — Extreme case: ID code

How to prune?

- Don't continue splitting if the nodes get very small (J48 minNumObj parameter, default value 2)
- Build full tree and then work back from the leaves, applying a statistical test at each stage (confidenceFactor parameter, default value 0.25)
- Sometimes it's good to prune an interior node, raising the subtree beneath it up one level (subtreeRaising, default *true*)
- Messy ... complicated ... not particularly illuminating

Over-fitting (again!)

Sometimes simplifying a decision tree gives better results

- Open file diabetes.arff
- Choose J48 decision tree learner (trees>J48)
- Prunes by default: 73.8% accuracy, tree has 20 leaves, 39 nodes
- Turn off pruning: 72.7%22 leaves, 43 nodes
- Extreme example: breast-cancer.arff
- Default (pruned): 75.5% accuracy, tree has 4 leaves, 6 nodes
- Unpruned:
 69.6%
 152 leaves, 179 nodes

- C4.5/J48 is a popular early machine learning method
- Many different pruning methods
 - mainly change the size of the pruned tree
- Pruning is a general technique that can apply to structures other than trees (e.g. decision rules)
- Univariate vs. multivariate decision trees
 - Single vs. compound tests at the nodes

From C4.5 to J48 (recall Lesson 1.4)

Course text

Section 6.1 *Decision trees*

Ross Quinlan, Australian computer scientist

Data Mining with Weka

Class 3 – Lesson 6

Nearest neighbor

Ian H. Witten

Department of Computer Science University of Waikato New Zealand

weka.waikato.ac.nz

"Rote learning": simplest form of learning

- To classify a new instance, search training set for one that's "most like" it
 - the instances themselves represent the "knowledge"
 - lazy learning: do nothing until you have to make predictions
- "Instance-based" learning = "nearest-neighbor" learning

Search training set for one that's "most like" it

- Need a similarity function
 - Regular ("Euclidean") distance? (sum of squares of differences)
 - Manhattan ("city-block") distance? (sum of absolute differences)
 - Nominal attributes? Distance = 1 if different, 0 if same
 - Normalize the attributes to lie between 0 and 1?

What about noisy instances?

- Nearest-neighbor
- ✤ k-nearest-neighbors
 - choose majority class among several neighbors (k of them)
- In Weka,

lazy>IBk (instance-based learning)

Investigate effect of changing k

- Glass dataset
- ✤ lazy > IBk, k = 1, 5, 20

10-fold cross-validation

<i>k</i> = 1	<i>k</i> = 5	<i>k</i> = 20
70.6%	67.8%	65.4%

- ✤ Often very accurate ... but slow:
 - scan entire training data to make each prediction?
 - sophisticated data structures can make this faster
- Assumes all attributes equally important
 - Remedy: attribute selection or weights
- Remedies against noisy instances:
 - Majority vote over the k nearest neighbors
 - Weight instances according to prediction accuracy
 - Identify reliable "prototypes" for each class
- Statisticians have used *k*-NN since 1950s
 - If training set size $n \to \infty$ and $k \to \infty$ and $k/n \to 0$, error approaches minimum

Course text

Section 4.7 *Instance-based learning*

Data Mining with Weka

Department of Computer Science University of Waikato New Zealand

Creative Commons Attribution 3.0 Unported License

creativecommons.org/licenses/by/3.0/

weka.waikato.ac.nz