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Fewer attributes, better classification
 Data Mining with Weka, Lesson 1.5

– Open glass.arff; run J48 (trees>J48): cross-validation classification accuracy 67%
– Remove all attributes except RI and Mg: 69%
– Remove all attributes except RI, Na, Mg, Ca, Ba: 74%

 “Select attributes” panel avoids laborious experimentation
– Open glass.arff; attribute evaluator WrapperSubsetEval

select J48, 10-fold cross-validation, threshold = –1
– Search method: BestFirst; select Backward
– Get the same attribute subset: RI, Na, Mg, Ca, Ba: “merit” 0.74

 How much experimentation?
– Set searchTermination = 1 
– Total number of subsets evaluated 36

complete set (1 evaluation); remove one attribute (9); one more (8);one more (7); one more (6); plus one more (5) to 
check that removing a further attribute does not yield an improvement; 1+9+8+7+6+5 = 36

Lesson 4.1: Attribute selection using the “wrapper” method



Searching
 Exhaustive search: 29 = 512 subsets
 Searching forward, searching backward

+ when to stop? (searchTermination)

all 9 
attributes

0 attributes 
(ZeroR)

…

forward 
search

backward 
searchbidirectional 

search
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Trying different searches (WrapperSubsetEval folds = 10, threshold = –1)

 Backwards (searchTermination = 1): RI, Mg, K, Ba, Fe (0.72)
– searchTermination = 5 or more: RI, Na, Mg, Ca, Ba (0.74)

 Forwards: RI, Al, Ca (0.70)
– searchTermination = 2 or more: RI, Na, Mg, Al, K, Ca (0.72)

 Bi-directional: RI, Al, Ca (0.70)
– searchTermination = 2 or more: RI, Na, Mg, Al (0.74)

 Note: local vs global optimum
– searchTermination > 1 can traverse a valley

 Al is the best single attribute to use (as OneR will confirm)
– thus forwards search results include Al

 (curiously) Al is the best single attribute to drop
– thus backwards search results do not include Al

Lesson 4.1: Attribute selection using the “wrapper” method



Cross-validation
Backward (searchTermination=5)

Definitely choose RI, Mg, Ba; probably Na, Ca; probably not Al, Si, K, Fe

But if we did forward search, would definitely choose Al!

number of folds (%)  attribute
10(100 %)    1 RI
8( 80 %)    2 Na

10(100 %)    3 Mg
3( 30 %)    4 Al
2( 20 %)    5 Si
2( 20 %)    6 K
7( 70 %)    7 Ca

10(100 %)    8 Ba
4( 40 %)    9 Fe

Lesson 4.1: Attribute selection using the “wrapper” method

In how many folds
does that attribute
appear in the final subset?



Gory details
(generally, Weka methods follow descriptions in the research literature)
 WrapperSubsetEval attribute evaluator

– Default: 5-fold cross-validation
– Does at least 2 and up to 5 cross-validation runs and takes average accuracy
– Stops when the standard deviation across the runs is less than the user-specified 

threshold times the mean (default: 1% of the mean)
– Setting a negative threshold forces a single cross-validation

 BestFirst search method
– searchTermination defaults to 5 for traversing valleys

 Choose ClassifierSubsetEval to use the wrapper method, but with a 
separate test set instead of cross-validation

Lesson 4.1: Attribute selection using the “wrapper” method



 Use a classifier to find a good attribute set (“scheme-dependent”)
– we used J48; in the associated Activity you will use ZeroR, OneR, IBk

 Wrap a classifier in a cross-validation loop
 Involves both an Attribute Evaluator and a Search Method
 Searching can be greedy forward, backward, or bidirectional

– computationally intensive; m2 for m attributes
– there’s also has an “exhaustive” search method (2m), used in the Activity

 Greedy searching finds a local optimum in the search space
– you can traverse valleys by increasing the searchTermination parameter

Course text
 Section 7.1 Attribute selection
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 Select attributes and apply a classifier to the result J48 IBk
– glass.arff default parameters everywhere 67% 71%
– Wrapper selection with J48    {RI, Mg, Al, K, Ba} 71%
– with IBk {RI, Mg, Al, K,  Ca, Ba} 78%

 Is this cheating? – yes!
 AttributeSelectedClassifier (in meta) 

– Select attributes based on training data only
… then train the classifier and evaluate it on the test data

– like the FilteredClassifier used for supervised discretization (Lesson 2.2)
– Use AttributeSelectedClassifier to wrap J48 72% 74%
– Use AttributeSelectedClassifier to wrap IBk 69% 71%

Lesson 4.2: The Attribute Selected Classifier

(slightly 
surprising)



 Check the effectiveness of the AttributeSelectedClassifier NaiveBayes
– diabetes.arff 76.3%
– AttributeSelectedClassifier, NaiveBayes, WrapperSubsetEval, NaiveBayes 75.7% 

 Add copies of an attribute
– Copy the first attribute (preg); NaiveBayes 75.7%
– AttributeSelectedClassifier as above 75.7%
– Add 9 further copies of preg; NaiveBayes 68.9%
– AttributeSelectedClassifier as above 75.7%
– Add further copies: NaiveBayes even worse
– AttributeSelectedClassifier as above 75.7%

 Attribute selection does a good job of removing redundant attributes

Lesson 4.2: The Attribute Selected Classifier



 AttributeSelectedClassifier selects based on training set only
– even when cross-validation is used for evaluation
– this is the right way to do it!
– we used J48; in the associated Activity you will use ZeroR, OneR, IBk

 (probably) Best to use the same classifier within the wrapper
– e.g. wrap J48 to select attributes for J48

 One-off experiments in the Explorer may not be reliable
– the associated Activity uses the Experimenter for more repetition

Course text
 Section 7.1 Attribute selection
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Wrapper method is simple and direct – but slow
 Either:

1. use a single-attribute evaluator, with ranking (Lesson 4.4)
– can eliminate irrelevant attributes

2. combine an attribute subset evaluator with a search method
– can eliminate redundant attributes as well

 We’ve already looked at search methods (Lesson 4.1)
– greedy forward, backward, bidirectional

 Attribute subset evaluators
– wrapper methods are scheme-dependent attribute subset evaluators
– other subset evaluators are scheme-independent

Lesson 4.3: Scheme-independent attribute selection



CfsSubsetEval: a scheme-independent attribute subset evaluator

 An attribute subset is good if the attributes it contains are
– highly correlated with the class attribute
– not strongly correlated with one another

 Goodness of an attribute subset =

 C measures the correlation between two attributes
 An entropy-based metric called the “symmetric uncertainty” is used

Lesson 4.3: Scheme-independent attribute selection

∑ all attributes(class,ݔ)ܥ ∑ඥݔ ∑ ,ݔ)ܥ all attributes(ݕ all attributesݕ ݔ



Compare CfsSubsetEval with Wrapper selection on ionosphere.arff

NaiveBayes IBk J48
 No attribute selection 83% 86% 91%

 With attribute selection (using AttributeSelectedClassifier)
– CfsSubsetEval (very fast) 89% 89% 92%

– Wrapper selection (very slow) 91% 89% 90%
(the corresponding classifier is used in the wrapper, e.g. the wrapper for IBk uses IBk)

 Conclusion: CfsSubsetEval is nearly as good as Wrapper, and much faster

Lesson 4.3: Scheme-independent attribute selection



Attribute subset evaluators in Weka

Scheme-dependent
 WrapperSubsetEval (internal cross-validation)
 ClassifierSubsetEval (separate held-out test set)

Scheme-independent
 CfsSubsetEval

– consider predictive value of each attribute, along with the degree of inter-redundancy

 ConsistencySubsetEval
– measures consistency in class values of training set with respect to the attributes
– seek the smallest attribute set whose consistency is no worse than for the full set

(There are also meta-evaluators, which incorporate other operations)

Lesson 4.3: Scheme-independent attribute selection



 Attribute subset selection involves
– a subset evaluation measure
– a search method

 Some measures are scheme-dependent
– e.g. the wrapper method; but very slow

 … and others are scheme-independent
– e.g. CfsSubsetEval; quite fast 

 Even faster … single-attribute evaluator, with ranking (next lesson)

Course text
 Section 7.1 Attribute selection
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 Attribute subset selection involves:
– subset evaluation measure 
– search method

 Searching is slow!

 Alternative: use a single-attribute evaluator, with ranking
– can eliminate irrelevant attributes 

… but not redundant attributes

 Choose the “ranking” search method when selecting a single-attribute 
evaluator

Lesson 4.4: Fast attribute selection using ranking



Metrics for evaluating attributes: we’ve seen some before
 OneR uses the accuracy of a single-attribute classifier OneRAttributeEval

 C4.5 (i.e. J48) uses information gain InfoGainAttributeEval
… actually, it uses gain ratio GainRatioAttributeEval

 CfsSubsetEval uses “symmetric uncertainty” SymmetricalUncertAttributeEval

The “ranker” search method sorts attributes according to their evaluation
 parameters

– number of attributes to retain (default: retain all)
– or discard attributes whose evaluation falls below a threshold (default: –∞)
– can specify a set of attributes to ignore

Lesson 4.4: Fast attribute selection using ranking



Compare GainRatioAttributeEval with others on ionosphere.arff

NaiveBayes IBk J48
 No attribute selection 83% 86% 91%

 With attribute selection (using AttributeSelectedClassifier)
– CfsSubsetEval (very fast) 89% 89% 92%

– Wrapper selection (very slow) 91% 89% 90%
(the corresponding classifier is used in the wrapper, e.g. the wrapper for IBk uses IBk)

– GainRatioAttributeEval, retaining 7 attributes 90% 86% 91%

 Lightning fast …
but performance is sensitive to the number of attributes retained

Lesson 4.3: Scheme-independent attribute selection



Attribute evaluators in Weka
 OneRAttributeEval
 InfoGainAttributeEval
 GainRatioAttributeEval
 SymmetricalUncertaintyAttributeEval
plus
 ChiSquaredAttributeEval – compute the  χ2 statistic of each attribute wrt the class

 SVMAttributeval – use SVM to determine the value of attributes

 ReliefFAttributeEval – instance-based attribute evaluator

 PrincipalComponents – principal components transform, choose largest eigenvectors

 LatentSemanticAnalysis – performs latent semantic analysis and transformation

(There are also meta-evaluators, which incorporate other operations)

Lesson 4.4: Fast attribute selection using ranking



 Attribute subset evaluation
– involves searching and is bound to be slow

 Single-attribute evaluation
– involves ranking, which is far faster
– difficult to specify a suitable number of attributes to retain 

(involves experimentation)
– does not cope with redundant attributes

(e.g. copies of an attribute will be repeatedly selected)
 Many single-attribute evaluators are based on ML methods

Course text
 Section 7.1 Attribute selection
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 So far, the classification rate
(measured by test set, holdout, cross-validation) 

 Different kinds of error may have different costs
 Minimizing total errors is inappropriate

With 2-class classification, the ROC curve summarizes different tradeoffs

 Credit dataset credit-g.arff
It’s worse to class a customer as good when they are bad
than to class a customer as bad when they are good

 Economic model: error cost of 5 vs. 1

What is success?

Lesson 4.5: Counting the cost



 Credit dataset credit-g.arff
 J48 (70%)

 Classify Panel “More options”: Cost-sensitive evaluation
Cost matrix:

 Baseline (ZeroR)

 if you were to classify everything as bad the total cost would be only 700

Weka: Cost-sensitive evaluation

Lesson 4.5: Counting the cost

0    1
5    0 

a      b      <-- classified as
588   112  |    a = good
183   117  |    b = bad

cost: 295 incorrectly 
classified instances

cost: 300 × 5 = 1500

a      b      <-- classified as
700       0  |    a = good
300       0  |    b = bad

cost: 183 × 5 + 112 × 1
= 1027 (1.027/instance) 



 The classifier should know the costs when learning!
 meta > CostSensitiveClassifier
 Select J48
 Define cost matrix:

 Worse classification error (61% vs. 70%)
 Lower average cost (0.66 vs. 1.027) 
 Effect of error on confusion matrix

 ZeroR: average cost 0.7

Weka: cost-sensitive classification

Lesson 4.5: Counting the cost

0    1
5 0

a      b
588   112  |    a = good
183   117  |    b = bad

a      b      
372   328  |    a = good
66   234  |    b = bad

old new



 Is classification accuracy the best measure?
 Economic model: cost of errors

– or consider the tradeoff between error rates – the ROC curve
 Cost-sensitive evaluation
 Cost-sensitive classification
 meta > CostSensitiveClassifier

– makes any classifier cost-sensitive

 Section 5.7 Counting the cost

Lesson 4.5: Counting the cost
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Adjust a classifier’s output 
by recalculating the probability threshold
 Credit dataset credit-g.arff
 NaiveBayes, Output predictions

 Threshold: 0.5
– predicts 756 good, with 151 mistakes
– 244 bad, with 95 mistakes

Making a classifier cost-sensitive: Method 1: Cost-sensitive classification

actual predicted pgood
good good 0.999
good good 0.991
good good 0.983
good good 0.975
good good 0.965
bad good 0.951
bad good 0.934

good good 0.917
good good 0.896
good good 0.873
good good 0.836
good good 0.776
bad good 0.715

good good 0.663
good good 0.587
bad good 0.508

good bad 0.416
bad bad 0.297

good bad 0.184
bad bad 0.04

a      b      <-- classified as
605    95  |    a = good
151  149  |    b = bad

Lesson 4.6: Cost-sensitive classification vs. cost-sensitive learning
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 Cost matrix

 Threshold = 5/6 = 0.833

total cost 517 (vs. 850)

 General cost matrix:

 To minimize expected cost, classify as good if

a      b      <-- classified as
448 252  |    a = good
53    247  |    b = bad

Recalculating the probability threshold

0    λ
μ    0 

μ
λ + μ

a    b
0    1 |  a = good
5 0  |  b = bad

Lesson 4.6: Cost-sensitive classification vs. cost-sensitive learning

pgood >



 They (almost) all do 
 J48 with minNumObj = 100 (to get small tree)
 from tree, 

1 – 37/108 = 0.657, 68/166=0.410, 1 – 44/152 = 0.711, etc

 Other methods (e.g. rules) are similar

What about methods that don’t produce probabilities?

Lesson 4.6: Cost-sensitive classification vs. cost-sensitive learning

actual predicted pgood
good good 0.883
good good 0.883
good good 0.883
good good 0.883
good good 0.883
good good 0.883
good good 0.883
good good 0.883
good good 0.778
bad good 0.778
bad good 0.711

good good 0.711
good good 0.711
good good 0.657
bad good 0.657

good bad 0.479
good bad 0.479
bad bad 0.410

good bad 0.410
bad bad 0.410
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 Credit dataset credit-g.arff; J48
 Cost matrix

cost 1027

 meta > CostSensitiveClassifier; minimizeExpectedCost = true; set cost matrix
 select J48 cost 770

 use bagging (Data Mining with Weka, Lesson 4.6)
… J48 produces a restricted set of probs

 bagged J48 cost 603

CostSensitiveClassifier with minimizeExpectedCost = true

a    b
0    1 |  a = good
5 0  |  b = bad

Lesson 4.6: Cost-sensitive classification vs. cost-sensitive learning

a      b      <-- classified as
455  245  |    a = good
105  195  |    b = bad

a      b      <-- classified as
367  333  |    a = good

54  246  |    b = bad

a      b      <-- classified as
588  112  |    a = good
183  117  |    b = bad



 Cost-sensitive classification adjusts the output of a classifier
 Cost-sensitive learning learns a different classifier
 Create a new dataset with some instances replicated
 To simulate the cost matrix

 add 4 copies of every bad instance
Dataset credit-g has 700 good and 300 bad instances (1000)
 new version has 700 good and 1500 bad (2200)

… and re-learn!
 In practice, re-weight the instances, don’t copy them

Method 2: Cost-sensitive learning

a    b   
0    1 |  a = good
5 0  |  b = bad

Lesson 4.6: Cost-sensitive classification vs. cost-sensitive learning



 Credit dataset, cost matrix as before credit-g.arff; J48
 meta > CostSensitiveClassifier; minimizeExpectedCost = false
 NaïveBayes cost 530

 J48 cost 658

 bagged J48 cost 581

Cost-sensitive learning in Weka:
CostSensitiveClassifier with minimizeExpectedCost = false (default)

Lesson 4.6: Cost-sensitive classification vs. cost-sensitive learning

a      b      <-- classified as
445    255  |    a = good

55    245  |    b = bad

a      b      <-- classified as
404    296  |    a = good

57    243  |    b = bad

a      b      <-- classified as
372  328  |    a = good

66  234  |    b = bad



 Cost-sensitive classification: adjust a classifier’s output
 Cost-sensitive learning: learn a new classifier

– by duplicating instances appropriately (inefficient!)
– or by internally reweighting the original instances

 meta > CostSensitiveClassifier
– implements both cost-sensitive classification and cost-sensitive 

learning
 Cost matrix can be stored and loaded automatically

– e.g. german-credit.cost

 Section 5.7 Counting the cost

Lesson 4.6: Cost-sensitive classification vs. cost-sensitive learning
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