

More Data Mining with Weka

Class 2 – Lesson 1

Discretizing numeric attributes

lan H. Witten

Department of Computer Science
University of Waikato
New Zealand

weka.waikato.ac.nz

Transforming numeric attributes to nominal

- Equal-width binning
- Equal-frequency binning ("histogram equalization")
- How many bins?
- Exploiting ordering information?

Equal-width binning

- Open ionosphere.arff; use J48 91.5% (35 nodes)
 - a01: values -1 (38) and +1 (313) [check with Edit...]
 - a03: scrunched up towards the top end
 - a04: normal distribution?
- unsupervised>attribute>discretize: examine parameters
- 40 bins; all attributes; look at values
 87.7% (81 nodes)
 - *a01:*
 - *a03:*
 - a04: looks normal with some extra –1's and +1's
- ❖ 10 bins

 86.6% (51 nodes)
- ❖ 5 bins

 90.6% (46 nodes)
- ❖ 2 bins90.9% (13 nodes)

Equal-frequency binning

```
ionosphere.arff; use J4891.5% (35 nodes)
```

- a01: only 2 bins
- a03: flat with peak at +1 and small peaks at -1 and 0 (check Edit... window)
- a04: flat with peaks at -1, 0, and +1
- ❖ 10 bins 89.5% (48 nodes)
- ❖ 5 bins

 90.6% (28 nodes)
- 2 bins (look at attribute histograms!)
 82.6% (47 nodes)
- How many bins?

$$\propto \sqrt{number\ of\ instances}$$

(called "proportional k-interval discretization")

How to exploit ordering information? – what's the problem?

How to exploit ordering information? – a solution

- \clubsuit Transform a discretized attribute with k values into k-1 binary attributes
- ❖ If the original attribute's value is *i* for a particular instance, set the first *i* binary attributes to *true* and the remainder to *false*

How to exploit ordering information? – a solution

- \clubsuit Transform a discretized attribute with k attributes into k-1 binary attributes
- If the original attribute's value is i for a particular instance, set the first i binary attributes to true and the remainder to false

How to exploit ordering information? – a solution

- \clubsuit Transform a discretized attribute with k attributes into k-1 binary attributes
- If the original attribute's value is i for a particular instance, set the first i binary attributes to true and the remainder to false

- Equal-width binning
- Equal-frequency binning ("histogram equalization")
- How many bins?
- Exploiting ordering information
- Next ... take the class into account ("supervised" discretization)

Course text

Section 7.2 Discretizing numeric attributes

More Data Mining with Weka

Class 2 – Lesson 2

Supervised discretization and the FilteredClassifier

lan H. Witten

Department of Computer Science
University of Waikato
New Zealand

weka.waikato.ac.nz

Transforming numeric attributes to nominal

What if all instances in a bin have one class, and all instances in the next higher bin have another class except for the first, which has the original class?

Take the class values into account – supervised discretization

Transforming numeric attributes to nominal

- ❖ Use the entropy heuristic (pioneered by C4.5 J48 in Weka)
- e.g. temperature attribute of weather.numeric.arff dataset

- Choose split point with smallest entropy (largest information gain)
- Repeat recursively until some stopping criterion is met

Supervised discretization: information-gain-based

- ionosphere.arff; use J48
 91.5% (35 nodes)
- supervised>attribute>discretize: examine parameters
- apply filter: attributes range from 1–6 bins
- Use J48? but there's a problem with cross-validation!
 - test set has been used to help set the discretization boundaries cheating!!!
- (undo filtering)
- meta>FilteredClassifier: examine "More" info
- set up filter and J48 classifier; run: 91.2% (27 nodes)
- configure filter to set makeBinary
 92.6% (17 nodes)
- cheat by pre-discretizing using makeBinary 94.0% (17 nodes)

- Supervised discretization
 - take class into account when making discretization boundaries
- For test set, must use discretization determined by training set
- How can you do this when cross-validating?
- FilteredClassifier: designed for exactly this situation
- Useful with other supervised filters too

Course text

- Section 7.2 Discretizing numeric attributes
- Section 11.3 Filtering algorithms, subsection "Supervised filters"

More Data Mining with Weka

Class 2 – Lesson 3

Discretization in J48

lan H. Witten

Department of Computer Science
University of Waikato
New Zealand

weka.waikato.ac.nz

Class 1 Exploring Weka's interfaces; working with big data

Class 2 **Discretization and text classification**

Class 3 **Classification rules, association rules, and clustering**

Class 4 **Selecting attributes and counting the cost**

Class 5 Neural networks, learning curves, and performance optimization

Lesson 2.1 Discretization

Lesson 2.2 Supervised discretization

Lesson 2.3 Discretization in J48

Lesson 2.4 Document classification

Lesson 2.5 Evaluating 2-class classification

Lesson 2.6 Multinomial Naïve Bayes

How does J48 deal with numeric attributes?

Top-down recursive divide-and-conquer (review)

- **Select** attribute for root node
 - Create branch for each possible attribute value
- Split instances into subsets
 - One for each branch extending from the node
- * Repeat recursively for each branch
 - using only instances that reach the branch

Q: Which is the best attribute to split on?

A (J48): The one with the greatest "information gain"

Information gain

- Amount of information gained by knowing the value of the attribute
- (Entropy of distribution before the split) (entropy of distribution after it)
- entropy($p_1, p_2, ..., p_n$) = $-p_1 \log p_1 p_2 \log p_2 ... p_n \log p_n$

Information gain for the temperature attribute

- Split-point is a number ... and there are infinitely many numbers!
- Split mid-way between adjacent values in the training set
- \bullet *n*–1 possibilities (*n* is training set size); try them all!

information gain = 0.001 bits

Further down the tree, split on humidity

Outlook	Temp	Humidity	Wind	Play
Sunny	85	85	False	No
Sunny	80	90	True	No
Sunny	72	95	False	No
Sunny	69	70	False	Yes
Sunny	75	70	True	Yes

humidity separates no's from yes's split halfway between {70,70} and {85}, i.e. 75 (!)

Discretization when building a tree vs. in advance

- Discretization boundaries are determined in a more specific context
- But based on a small subset of the overall information
 - ... particularly lower down the tree, near the leaves
- For every internal node, the instances that reach it must be sorted separately for every numeric attribute
 - ... and sorting has complexity $O(n \log n)$
 - ... but repeated sorting can be avoided with a better data structure

- C4.5/J48 incorporated discretization early on
- Pre-discretization is an alternative, developed/refined later
 - Supervised discretization uses essentially the same entropy heuristic
 - Can retain the ordering information that numeric attributes imply
- Will J48 internal discretization outperform pre-discretization?
 - arguments both for and against
- ❖ An experimental question you will answer it in the activity!
 - and for other classifiers too

Course text

Section 6.1 Decision trees

More Data Mining with Weka

Class 2 – Lesson 4

Document classification

lan H. Witten

Department of Computer Science
University of Waikato
New Zealand

weka.waikato.ac.nz

Some training data

Document text	Classification
The price of crude oil has increased significantly	yes
Demand of crude oil outstrips supply	yes
Some people do not like the flavor of olive oil	no
The food was very oily	no
Crude oil is in short supply	yes
Use a bit of cooking oil in the frying pan	no

@relation 'training text'

@attribute text string

@attribute type {yes, no}

@data

'The price of crude oil has increased significantly', yes 'Demand of crude oil outstrips supply', yes

'Some people do not like the flavor of olive oil', no

- Load into Weka; note "string" attributes
- Apply StringToWordVector (unsupervised attribute filter)
- Creates 33 new attributes
 - Crude, Demand, The, crude, has, in, increases, is, of, oil, ...
- Binary, numeric
- Use J48 (must set the class attribute)
- Evaluate on training set
- Visualize the tree

- Supplied test set
 - set "Output predictions"
- Problem evaluating classifier
- Apply StringToWordVector to test file?
 - still get "Problem evaluating classifier"
- Solution: FilteredClassifier
 - StringToWordVector creates attributes from training set
 - FilteredClassifier uses same attributes for test set
- Result:
 - document 1 is "yes"; Documents 2, 3, 4 are "no"
 - (though document 3 should be "yes")

Some test data

Document text	Classification
Oil platforms extract crude oil	Unknown
Canola oil is supposed to be healthy	Unknown
Iraq has significant oil reserves	Unknown
There are different types of cooking oil	Unknown

- ❖ Take a look at the dataset: ReutersCorn-train.arff
 - it's big: 1554 instances, 2 attributes
- Apply StringToWordVector
 - it's huge: 1554 instances, 2234 attributes (!)
- Test set: ReutersCorn-test.arff
- FilteredClassifier with StringToWordVector and J48
 - (takes a while)
- 97% classification accuracy
- Look at model
- Look at confusion matrix:
 - classification accuracy on 24 corn-related documents: 15/24 = 62%
 - on remaining 580 documents: 573/580 = 99%
- Is the overall classification accuracy really the right thing to optimize?

- String attributes
- StringToWordVector filter: creates many attributes
- Check options for StringToWordVector
- J48 models for text data
- Overall classification accuracy
 - is it really what we care about?
 - perhaps not

More Data Mining with Weka

Class 2 – Lesson 5

Evaluating 2-class classification

lan H. Witten

Department of Computer Science
University of Waikato
New Zealand

weka.waikato.ac.nz

Weather data; Naïve Bayes; 10-fold cross-validation

(taking "yes" as the positive class)

Different probability thresholds

```
=== Predictions on test data ===
         actual, predicted, error, probability distribution
inst#,
     1
            2:no
                      1:yes
                                 + *0.926 0.074
     2
                                    *0.825 0.175
           1:yes
                      1:yes
     1
            2:no
                      1:yes
                                 + *0.636 0.364
           1:yes
                      1:yes
                                    *0.808 0.192
                                     0.282 *0.718
     1
            2:no
                      2:no
     2
                     2:no
                                 + 0.344 *0.656
           1:yes
     1
            2:no
                      1:yes
                                + *0.579 0.421
           1:yes
                      1:yes
                                    *0.541 0.459
                      1:yes
                                 + *0.515 0.485
            2:no
     1
           1:yes
                     2:no
                                     0.368 *0.632
    1
           1:yes
                      1:yes
                                    *0.84
                                            0.16
     1
           1:yes
                      1:yes
                                    *0.554 0.446
                                    *0.757 0.243
     1
           1:yes
                      1:yes
                                    *0.778 0.222
           1:yes
                      1:yes
```

```
a b <-- classified as
7 2 | a = yes
4 1 | b = no
```


Different probability thresholds

... different tradeoffs between accuracy on class a and accuracy on class b

The "ROC" curve (Receiver Operating Characteristic: historical name)

accuracy on class a

	,	\ .	\ .
actual	probability	FP rate	TP rate
no yes yes yes yes yes	0.926 0.840 0.825 0.808 0.778 0.757	0/5 1/5 1/5 1/5 1/5 1/5	0/9 0/9 1/9 2/9 3/9 4/9
no no	0.636 0.579	2/5	5/9
yes yes no	0.554 0.541 0.515	3/5 3/5 3/5	5/9 6/9 7/9
yes yes no	0.368 0.344 0.282	4/5 4/5 4/5 5/5	7/9 8/9 9/9 9/9

1 – accuracy

on class b

accuracy

on class a

1 – accuracy on class b

Idealized "ROC" curves

---- ROC curve for J48: Area under ROC = 0.6333

- "Per-class accuracy" threshold curves
 - points correspond to different tradeoffs between error types
- ROC curves: TP rate (y axis) against FP rate (x axis)
 - go from lower left to upper right
 - good ones stretch up towards the top left corner
 - a diagonal line corresponds to a random decision
- ❖ AUC (area under the [ROC] curve) measures overall quality
 - probability that the classifier ranks a randomly chosen +ve test instance above a randomly chosen –ve one

Course text

Section 5.2 Counting the cost, subsection "ROC curves"

More Data Mining with Weka

Class 2 – Lesson 6

Multinomial Naïve Bayes

lan H. Witten

Department of Computer Science
University of Waikato
New Zealand

weka.waikato.ac.nz

Remember Naïve Bayes?

Probability of event H given evidence E

Evidence splits into independent parts

$$Pr[E | H] = Pr[E_1 | H] Pr[E_2 | H] ... Pr[E_n | H]$$

Document classification: E_i is appearance of word i

- But
 - non-appearance of a word counts just as strongly as appearance
 - does not account for multiple repetitions of a word
 - treats all words (common ones, unusual ones, ...) the same

Multinomial Naïve Bayes

(for the curious)

$$Pr[E \mid H] = Pr[E_1 \mid H] Pr[E_2 \mid H] \dots Pr[E_n \mid H]$$

$$= N! \times \prod_{i=1}^{k} \frac{p_i^{n_i}}{n_i!}$$

- p_i is probability of word *i* over all documents in class *H*
- n_i is number of times it appears in this document
- $N = n_1 + n_2 + ... + n_k$ is number of words in this document (the factorials "!" are a technicality to account for different word orderings)

- Training set: ReutersGrain-train.arff; test set: ReutersGrain-test.arff
- Classifier: FilteredClassifier with StringToWordVector
- J48 gets 96% classification accuracy
 - 38/57 on corn-related documents, 544/547 on others; ROC Area = 0.906
- NaiveBayes: 80% classification accuracy
 - 46/57 on corn-related documents, 439/547 on others; ROC Area = 0.885
- ❖ NaiveBayesMultinomial: 91% classification accuracy
 - 52/57 on corn-related documents, 496/547 on others; ROC Area = 0.973
- Set outputWordCounts in StringToWordVector NaiveBayesMultinomial: 91% classification accuracy
 - 54/57 on corn-related documents, 496/547 on others; ROC Area = 0.962
- Set lowerCaseTokens, useStoplist in StringToWordVector NaiveBayesMultinomial: 93% classification accuracy
 - 56/57 on corn-related documents, 504/547 on others; ROC Area = 0.978

- Multinomial Naïve Bayes is designed for text
 - based on word appearance only, not non-appearance
 - can account for multiple repetitions of a word
 - treats common words differently from unusual ones
- It's a lot faster than plain Naïve Bayes!
 - ignores words that do not appear in a document
 - internally, Weka uses a sparse representation of the data
- The StringToWordVector filter has many interesting options
 - although they don't necessarily give the results you're looking for!
 - outputs results in "sparse data" format, which MNB takes advantage of

Course text

Section 4.2 Statistical modeling, under "Naïve Bayes for document classification"

More Data Mining with Weka

Department of Computer Science
University of Waikato
New Zealand

Creative Commons Attribution 3.0 Unported License

creativecommons.org/licenses/by/3.0/

weka.waikato.ac.nz