

Class 1 – Lesson 1

Introduction

lan H. Witten

Department of Computer Science University of Waikato New Zealand

weka.waikato.ac.nz

... a practical course on how to use advanced facilities of Weka for data mining (but not programming, just the interactive interfaces)

... follows on from *Data Mining with Weka*

... will pick up some basic principles along the way

lan H. Witten

University of Waikato, New Zealand

This course assumes that you know about

- What data mining is and why it's useful
- The "simplicity-first" paradigm
- Installing Weka and using the Explorer interface
- Some popular classifier algorithms and filter methods
- Using classifiers and filters in Weka ...
 and how to find out more about them
- Evaluating the result, including training/testing pitfalls
- Interpret Weka's output and visualizing your data set
- The overall data mining process
- See Data Mining with Weka
- (Refresher: see videos on YouTube WekaMOOC channel)

✤ As you know, a Weka is

- a bird found only in New Zealand?
- Data mining workbench:
 Waikato Environment for Knowledge Analysis

Machine learning algorithms for data mining tasks

- 100+ algorithms for classification
- 75 for data preprocessing
- 25 to assist with feature selection
- 20 for clustering, finding association rules, etc

What will you learn?

- *Experimenter, Knowledge Flow interface, Command Line interfaces*
- Dealing with "big data"
- Text mining
- Supervised and unsupervised filters
- All about discretization, and sampling
- Attribute selection methods
- Meta-classifiers for attribute selection and filtering
- All about classification rules: rules vs. trees, producing rules
- Association rules and clustering
- Cost-sensitive evaluation and classification

Use Weka on your own data ... and understand what you're doing!

Class 1: Exploring Weka's interfaces, and working with big data

- Experimenter interface
- Using the Experimenter to compare classifiers
- Knowledge Flow interface
- Simple Command Line interface
- Working with big data
 - Explorer: 1 million instances, 25 attributes
 - Command line interface: effectively unlimited
 - in the Activity you will process a multi-million-instance dataset

Class 1 Exploring Weka's interfaces; working with big data

Class 2 Discretization and text classification

Class 3 Classification rules, association rules, and clustering

Class 4 Selecting attributes and counting the cost

Class 5 Neural networks, learning curves, and performance optimization

Class 1 Exploring Weka's interfaces; working with big data

Class 2 Discretization and text classification

Class 3 Classification rules, association rules, and clustering

Class 4 Selecting attributes and counting the cost

Class 5 Neural networks, learning curves, and performance optimization Mid-class assessment

1/3

Download Weka now!

Download from

http://www.cs.waikato.ac.nz/ml/weka

for Windows, Mac, Linux

Weka 3.6.11

the latest stable version of Weka includes datasets for the course it's important to get the right version!

Textbook

This textbook discusses data mining, and Weka, in depth:

Data Mining: Practical machine learning tools and techniques, by Ian H. Witten, Eibe Frank and Mark A. Hall. Morgan Kaufmann, 2011

The publisher has made available parts relevant to this course in ebook format.

World Map by David Niblack, licensed under a Creative Commons Attribution 3.0 Unported License

Class 1 – Lesson 2

Exploring the Experimenter

Ian H. Witten

Department of Computer Science University of Waikato New Zealand

weka.waikato.ac.nz

Class 1 Exploring Weka's interfaces; working with big data

Class 2 Discretization and text classification

Class 3 Classification rules, association rules, and clustering

Class 4 Selecting attributes and counting the cost

Class 5 Neural networks, learning curves, and performance optimization Lesson 1.1 Introduction

Lesson 1.2 Exploring the Experimenter

Lesson 1.3 Comparing classifiers

Lesson 1.4 Knowledge Flow interface

Lesson 1.5 Command Line interface

Lesson 1.6 Working with big data

Use the Experimenter for ...

- determining mean and standard deviation performance of a classification algorithm on a dataset
 - ... or several algorithms on several datasets
- Is one classifier better than another on a particular dataset?
 ... and is the difference statistically significant?
- Is one parameter setting for an algorithm better than another?
- The result of such tests can be expressed as an ARFF file
- Computation may take days or weeks
 - ... and can be distributed over several computers

Setup	Run Analyse		
****	**********	•••	
Vel	a Experiment Environment		
Experime	nt Configuration Mode:	<u> <u> </u>Simple </u>	O <u>A</u> dvanced
	Open	<u>S</u> ave	New
ARF	file v Filename:		Browse
Experir	nent Type -validation	v Iteration Control	
Numbe	er of folds: assification Regression	 Data sets first Algorithms first 	
Datase	ts	Algorithms	
	Add new Edit selected	Delete selected Add new	Edit selected Delete selected
	Up	Load options	Save options Up Down
		Notes]

Evaluate J48 on segment-challenge (Data Mining with Weka, Lesson 2.3)

Evaluate J48 on segment-challenge (Data Mining with Weka, Lesson 2.3)

		0.967
	Σ_{ν}	0.940
Sample mean	$\overline{X} = \frac{\Delta X_i}{R}$	0.940
	n	0.967
Variance	$\sum_{i=1}^{2} \sum_{j=1}^{n} (x_i - \overline{x})^2$	0.953
	$\sigma^2 = \frac{1}{n-1}$	0.967
	··· _	0.920
Standard deviation	on σ	0.947
		0.933
		0.947

 \overline{x} = 0.949, σ = 0.018

 $\wedge \wedge \wedge \neg$

10-fold cross-validation (Data Mining with Weka, Lesson 2.5)

- Divide dataset into 10 parts (folds)
- Hold out each part in turn
- Average the results
- Each data point used once for testing, 9 times for training

Stratified cross-validation

Ensure that each fold has the right proportion of each class value

Weka Experiment Environment	A. A.		x						
Setup Run Analyse									
Experiment Configuration Mode:	Simple	Advanced							
Open	<u>S</u> ave	<u>N</u> ew							
Results Destination	Results Destination								
ARFF file 🔻 Filename:		Browse							
Experiment Type	Iteration Control								
Cross-validation	 Number of repetitions: 	10							
Number of folds: 10	 Data sets first 	Data sets first							
Classification Classification	 Algorithms first 	Algorithms first							
Datasets	Algorithms	Algorithms							
Add new Edit selected	Delete selected Add new	Edit selected Delete selected	ן ר						
Use relative paths	J48 -C 0.25 -M 2		-						
C:\Program Files (x86)\Weka-3-6\data\segment-challe	enge.arff								
	Down Load options	Save options Up Down							
	Notes								
·									

Setup panel

- click New
- note defaults
 - 10-fold cross-validation, repeat 10 times
- under Datasets, click Add new, open segment-challenge.arff
- under Algorithms, click Add new, open trees>J48

Run panel

click Start

Analyse panel

- click Experiment
- Select Show std. deviations
- Click Perform test
 - \overline{x} = 95.71%, σ = 1.85%

G Weka Experiment Environment		
Setup Run Analyse		
Experiment Configuration Mode:	<u>Simple</u>	Advanced
<u>O</u> pen	<u>S</u> ave	<u>N</u> ew
CSV file Filename C: \Users \ihw \Desktop \Lesso	on 1.2.csv	Browse
Europeinsont Tupo	Iteration Control	
Train/Test Percentage Split (data randomized)	 Number of repetitions: 	10
Train percentage: 90.0	 Data sets first 	
O Regression	Algorithms first	
Datasets	Algorithms	
Add new Edit selected Delete	selected Add new	Edit selected Delete selected
Use relative paths	J48 -C 0.25 -M 2	
C:\Program Files (x86)\Weka-3-6\data\segment-challenge.ar	ff	
Up Down	Load options	Save options Up Down
	Notes	
P		

To get detailed results

return to Setup panel

- select .csv file
- enter filename for results
- Train/Test Split; 90%

switch to Run panel

- click Start
- Open results spreadsheet

	A		R	C	D	E	F	G	Н	1	J	K		M	N	0	P	0
1	Key_Datas	t	ey_Ru	ey_Scheme	Key_Scheme	Key_Sche	Date_time	Number_of_	Number_	Number_	Number_	Number_	Percent_correct	cent_incorre	Percer	Kappa_s	Mean_a	Root_me
2	segment		1	if ers.trees.J48	'-C 0.25 -M 2	-2.2E+17	2.01E+07	1350	150	145	5	0	96.7	3.3	0	0.9611	0.012	0.09709
3	segment		2	if ers.trees.J48	'-C 0.25 -M 2	-2.2E+17	2.01E+07	1349	151	142	9	0	94.0	6.0	0	0.9304	0.019	0.128324
4	segment		3	if ers.trees.J48	'-C 0.25 -M 2	-2.2E+17	2.01E+07	1350	150	142	8	0	94.7	5.3	0	0.9377	0.017	0.119160
5	segment		4	if ers.trees.J48	'-C 0.25 -M 2	-2.2E+17	2.01E+07	1350	150	146	4	0	97.3	2.7	0	0.9689	0.009	0.07793
6	segment		5	if ers.trees.J48	'-C 0.25 -M 2	-2.2E+17	2.01E+07	1350	150	143	7	0	95.3	4.7	0	0.9455	0.016	0.11343
7	segment		6	if ers.trees.J48	'-C 0.25 -M 2	-2.2E+17	2.01E+07	1350	150	144	6	0	96.0	4.0	0	0.9533	0.014	0.109062
8	segment		7	if ers.trees.J48	'-C 0.25 -M 2	-2.2E+17	2.01E+07	1349	151	143	8	0	94.7	5.3	0	0.9381	0.016	0.118220
9	segment		8	if ers.trees.J48	'-C 0.25 -M 2	-2.2E+17	2.01E+07	1349	151	141	10	0	93.4	6.6	0	0.9227	0.02	0.13130
10	segment		9	if ers.trees.J48	'-C 0.25 -M 2	-2.2E+17	2.01E+07	1349	151	144	7	0	95.4	4.6	0	0.9459	0.015	0.11158
11	segment		10	if ers.trees.J48	'-C 0.25 -M 2	-2.2E+17	2.01E+07	1350	150	142	8	0	94.7	5.3	0	0.9377	0.016	0.119743
12																		
13																		

Re-run cross-validation experiment

Open results spreadsheet

Setup panel

- Save/Load an experiment
- Save the results in Arff file ... or in a database
- Preserve order in Train/Test split (can't do repetitions)
- Use several datasets, and several classifiers
- Advanced mode

Run panel

Analyse panel

Load results from .csv or Arff file ... or from a database

Many options

- Open Experimenter
- Setup, Run, Analyse panels
- Evaluate one classifier on one dataset

... using cross-validation, repeated 10 times ... using percentage split, repeated 10 times

- Examine spreadsheet output
- Analyse panel to get mean and standard deviation
- Other options on Setup and Run panels

Course text

Chapter 13 The Experimenter

Class 1 – Lesson 3

Comparing classifiers

Ian H. Witten

Department of Computer Science University of Waikato New Zealand

weka.waikato.ac.nz

Class 1 Exploring Weka's interfaces; working with big data

Class 2 Discretization and text classification

Class 3 Classification rules, association rules, and clustering

Class 4 Selecting attributes and counting the cost

Class 5 Neural networks, learning curves, and performance optimization **Lesson 1.1 Introduction**

Lesson 1.2 Exploring the Experimenter

Lesson 1.3 Comparing classifiers

Lesson 1.4 Knowledge Flow interface

Lesson 1.5 Command Line interface

Lesson 1.6 Working with big data

Is J48 better than (a) ZeroR and (b) OneR on the Iris data?

- In the Explorer, open iris.arff
- Using cross-validation, evaluate classification accuracy with ...

ZeroR (rules>ZeroR)	33%
OneR (<mark>rules>OneR</mark>)	92%
J48 (trees>J48)	96%

But how reliable is this?

What would happen if you used a different random number seed??

Weka Experiment Environment				
Setup Run Analyse				
Experiment Configuration Mode:	Simple	Advanced		
Open	Save	New		
Results Destination				
ARFF file Filename:		▲ · · · · - ·		
Experiment Type	Iteration Control	In the Experime	enter, click New	
Cross-validation -	Number of repetition	✤ Under Datasets	click Add new	open iris arff
Number of folds: 10	O Data sets first			
Classification Classification	 Algorithms first 	Under Algorithr	ms, click Add ne	w, open
Datasets	Algorithms	trees>J48	rules>OneR	rules>ZeroR
Add new Edit selected Delete selected	Add new			
Use relative paths	J48 -C 0.25 -M 2			
C:\Program Files (x86)\Weka-3-6\data\iris.arff	OneR -B 6 ZeroR			
Loop Down	Load options		Jown	
Ν	otes			

🕝 Weka Experiment Er	nvironment		
Setup Run Analyse			
Source			
Got 300results		<u>F</u> ile	Database Experiment
Configure test		Test output	
Testing <u>w</u> ith	Paired T-Tester (correc 🔻	Tester: weka.experiment.PairedCorrec Analysing: Percent_correct	Switch to Run; click Start
Row	Select	Datasets: 1 Resultsets: 3	Switch to Analyse, click <i>Experiment</i>
<u>C</u> olumn	Select	Confidence: 0.05 (two tailed) Sorted by: -	click Perform test
Significance	0.05	Date: 4/03/14 10:41 AM	
<u>S</u> orting (asc.) by	<default></default>	Dataset (1) trees.J4	(2) rules (3) rules =
Test <u>b</u> ase	Select	iris (100) 94.73	92.53 33.33 *
D <u>i</u> splayed Columns	Select	(▽/ /*)	(0/1/0) (0/0/1)
Show std. deviations		Kev:	
<u>O</u> utput Format	Select	(1) trees.J48 '-C 0.25 -M 2' -2177331683 (2) rules OpeR '-B 6' -34594270031478614	9364444
Perform <u>t</u> est	Save output	(3) rules.ZeroR '' 48055541465867954	····
Regiment		- F	

Dataset	(1)	trees.J4	(2) rules	(3) rules
iris	(100)	94.73	92.53	33.33 *
		(⊽/ /*)	(0/1/0)	(0/0/1)
<pre>(1) trees.J48 (2) rules.OneR (3) rules.ZeroR</pre>				

- v significantly better
- * significantly worse

- ZeroR (33.3%) is significantly worse than J48 (94.7%)
- Cannot be sure that OneR (92.5%) is significantly worse than J48
- ✤ ... at the 5% level of statistical significance
- ✤ J48 seems better than ZeroR: pretty sure (5% level) that this is not due to chance
- ... and better than OneR; but this may be due to chance (can't rule it out at 5% level)

Dataset	(1) trees	s.J4 (2) rules	(3) rules
iris	(100) 94	4.73 92.53	33.33 *
breast-cancer	(100) 74	4.28 66.91 *	70.30
pima_diabetes	(100) 74	4.49 71.52	65.11 *
Glass	(100) 67	7.63 57.40 *	35.51 *
segment	(100) 95	5.71 64.35 *	15.73 *
	(v/	/*) (0/2/5)	(0/2/5)
	1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -	Contraction Acceleration	(
Key:	J48 is signi	ficantly (5% le	vel) better
<pre>(1) trees.J48 (2) rules.OneR (3) rules.ZeroR</pre>	🛠 both C	DneR and ZeroF	R on Glass
(1) 1011010	Solution One R	on	breas
	ZeroR	on	iris, p

Dataset	(2) rules.On (1) t	rees (3) rules							
iris	(100) 92.53 94.	73 33.33 *							
breast-cancer	(100) 66.91 74.	28 v 70.30							
german_credit	(100) 65.91 71.	25 V 70.00 V							
Glass	(100) 57.40 67.1	49 00.11 ^ 63 v 35.51 *							
ionosphere	(100) 82.28 89.	74 v 64.10 *							
segment	(100) 64.35 95.	71 v 15.73 *							
	(v/ /*) (5/3	2/0) (1/1/5)							
Key:	Comparing OneR with ZeroR								
<pre>(1) Crees.348 (2) rules.OneR (3) rules.ZeroR</pre>	Change "Test base" on Analyse panel								
(,	 significantly wors 	e on gern							
	about the same c	on brea							

significantly better on all the rest

🕝 Weka Experiment E	nvironment						×			
Setup Run Analyse										
Source										
Got 2100results				<u>File</u>	atabase	<u>Experiment</u>				
Configure test		Test output	LWO LALIEQU		✤ R	low: sele	ect So	cheme	(not <i>Data</i>	set)
Testing <u>w</u> ith	Paired T-Tester (correc 🔻	Sorted by: -	,		•	、 I	^			1
<u>R</u> ow	Select	Date: 4/03/1	4 1:56 PM		** (olumn:	selec	t Datas	set (not Sa	cneme)
<u>C</u> olumn	Select	Dataset	(1)	iris	(2) breas	(3) germa (
Comparison field	Percent_correct 🔹	trees.J48	(100)	94.73	74.28 *	71.25 *				
Significance	0.05	rules.OneR	(100)	92.53	66.91 *	65.91 *				
Sorting (asc.) by	<default></default>	rules.ZeroR 	(100)	33.33	70.30 v	70.00 v	=			
Test <u>b</u> ase	Select			(v/ /*)	(1/0/2)	(1/0/2)				
D <u>i</u> splayed Columns	Select	Key:								
Show std. deviations		(1) iris								
		(2) breast-cancer (3) german credit				l				
Output Format	Select	(4) pima_diabetes								
		(5) Glass					-			
Perform <u>t</u> est	Save output	<				P.				
Realthint										

- Statistical significance: the "null hypothesis" Classifier A's performance is the same as B's
- The observed result is highly unlikely if the null hypothesis is true "The null hypothesis can be rejected at the 5% level" [of statistical significance]
 - "A performs significantly better than B at the 5% level"
- Can change the significance level (5% and 1% are common)
- Can change the comparison field (we have used % correct)
- Common to compare over a set of datasets

"On these datasets, method A has xx wins and yy losses over method B"

Multiple comparison problem

if you make many tests, some will appear to be "significant" just by chance!

Class 1 – Lesson 4

The Knowledge Flow interface

Ian H. Witten

Department of Computer Science University of Waikato New Zealand

weka.waikato.ac.nz

Class 1 Exploring Weka's interfaces; working with big data

Class 2 Discretization and text classification

Class 3 Classification rules, association rules, and clustering

Class 4 Selecting attributes and counting the cost

Class 5 Neural networks, learning curves, and performance optimization Lesson 1.1 Introduction

Lesson 1.2 Exploring the Experimenter

Lesson 1.3 Comparing classifiers

Lesson 1.4 Knowledge Flow interface

Lesson 1.5 Command Line interface

Lesson 1.6 Working with big data

The Knowledge Flow interface is an alternative to the Explorer

- Lay out filters, classifiers, evaluators interactively on a 2D canvas
- Components include data sources, data sinks, evaluation, visualization
- Different kinds of connections between the components
 - Instance or dataset
 - test set, training set
 - classifier
 - output, text or chart
- Can work incrementally, on potentially infinite data streams
- Can look inside cross-validation at the individual models produced

Load an ARFF file, choose J48, evaluate using cross-validation

**	Choose an ArffLoader; Configure to set the file iris.arff	DataSources					
••••	Connect up a ClassAssigner to select the class	Evaluation					
••••	Connect the result to a CrossValidationFoldMaker	Evaluation					
••••	Connect this to J48	Classifiers					
**	Make two connections, one for trainingSet and the other for testSet						
**	Connect J48 to ClassifierPerformanceEvaluator	Evaluation					
**	Connect this to a TextViewer	Visualization					

Toolbar

Then run it! (ArffLoader: Start loading)

TextViewer: Show results

0 0		Text V	/iewer				
Result list	Text						
11:19:10 - J48	=== Evaluation result						
	Scheme: 148						
	Options: -C 0.25 -M 2						
	Relation: iris						
	Correctly Classified I	nstances	144		96	8	
	Incorrectly Classified	Instances	6		4	8	
	Kappa statistic		0.94	-			
	Mean absolute error	n absolute error 0.035					
	Relative absolute erro	r	7.87	05 2			
	Root relative squared	error	33.63	53 %			
	Total Number of Instan	ces	150				
	=== Detailed Accuracy	By Class ==					
	TP Rate	FP Rate	Precision	Recall	F-Measure	ROC Area	Cla
	0.98	0	1	0.98	0.99	0.99	Ir
		A 47	- G M		1 64		10

- Add a ModelPerformanceChart
- Connect the visualizableError output of ClassifierPerformanceEvaluator to it
- Show chart (need to run again)

Working with stream data

- Panels broadly similar to the Explorer's, except
 - DataSources are separate from Filters
 - Write data or models to files using *DataSinks*
 - Evaluation is a separate panel
- Facilities broadly similar too, except
 - Can deal incrementally with potentially infinite datasets
 - Can look inside cross-validation at the models for individual folds
- Some people like graphical interfaces

Course text

Chapter 12 The Knowledge Flow Interface

Class 1 – Lesson 5

The Command Line interface

Ian H. Witten

Department of Computer Science University of Waikato New Zealand

weka.waikato.ac.nz

Class 1 Exploring Weka's interfaces; working with big data

Class 2 Discretization and text classification

Class 3 Classification rules, association rules, and clustering

Class 4 Selecting attributes and counting the cost

Class 5 Neural networks, learning curves, and performance optimization **Lesson 1.1 Introduction**

Lesson 1.2 Exploring the Experimenter

Lesson 1.3 Comparing classifiers

Lesson 1.4 Knowledge Flow interface

Lesson 1.5 Command Line interface

Lesson 1.6 Working with big data

Run a classifier from within the CLI

Print options for J48:

java weka.classifiers.trees.J48

- General options
 - -h print help info
 - -t <name of training file> [absolute path name ...]
 - -T <name of test file>
- Options specific to J48 (from Explorer configuration panel)
- ✤ Run J48:

-t "C:\Users\ihw\My Documents\Weka datasets\iris.arff" <------ training set

Classes and packages

- ✤ J48 is a "class"
 - a collection of variables, along with some "methods" that operate on them
- "Package" is a directory containing related classes

weka.classifiers.trees.J48
 v.
 •

 packages
 class

Javadoc: the definitive documentation for Weka

Weka-3-6\documentation.html

... find J48 in the "All classes" list

Using the Javadoc

"What's all this geeky stuff?" – Forget it. Try to ignore things you don't understand!

Find the "converter" package

weka.core.converters

Find the "databaseLoader" class

weka.core.converters.DatabaseLoader

Can load from any JDBC database

specify URL, password, SQL query

It's in the Explorer's Preprocess panel, but the documentation is here

- Can do everything the Explorer does from the command line
- People often open a terminal window instead
 - then you can do scripting (if you know how)
 - ... but you need to set up your environment properly
- Can copy and paste configured classifiers from the Explorer
- Advantage: more control over memory usage (next lesson)
- Javadoc is the definitive source of Weka documentation

Course text

Chapter 14 The Command-Line Interface

Class 1 – Lesson 6

Working with big data

Ian H. Witten

Department of Computer Science University of Waikato New Zealand

weka.waikato.ac.nz

Class 1 Exploring Weka's interfaces; working with big data

Class 2 Discretization and text classification

Class 3 Classification rules, association rules, and clustering

Class 4 Selecting attributes and counting the cost

Class 5 Neural networks, learning curves, and performance optimization Lesson 1.1 Introduction

Lesson 1.2 Exploring the Experimenter

Lesson 1.3 Comparing classifiers

Lesson 1.4 Knowledge Flow interface

Lesson 1.5 Command Line interface

Lesson 1.6 Working with big data

How much can Explorer handle? (~ 1M instances, 25 attributes)

- Memory information: in Explorer, right-click on "Status"
 - Free/total/max: 226,366,616 / 236,453,888 / 954,728,448 (bytes) [1 GB]
 - Meaning what? Geeks, check out Java's freeMemory(), totalMemory(), maxMemory() commands
- Let's break it!
- Download a large dataset?
 - "covertype" dataset used in the associated Activity
 - 580,000 instances, 54 attributes (0.75 GB uncompressed)
- Weka data generator
 - Preprocess panel, Generate, choose LED24; show text: 100 instances, 25 attributes
 - 100,000 examples (use % split!) NaiveBayes 74% J48 73%
 - 1,000,000 examples NaiveBayes 74% J48 runs out of memory
 - 2,000,000 examples

- Generate process grinds to a halt
- (Run console version of Weka)

"Updateable" classifiers

- Incremental classification models: process one instance at a time
 - AODE, AODEsr, DMNBtext, IB1, IBk, KStar, LWL, NaiveBayesMultinomialUpdateable, NaiveBayesUpdateable, NNge, RacedIncrementalLogitBoost, SPegasos, Winnow
- NaiveBayesUpdateable: same as NaiveBayes
- NaiveBayesMultinomialUpdateable: see lessons on Text Mining
- IB1, IBk (but testing can be very slow)
- KStar, LWL (locally weighted learning): instance-based
- SPegasos (in *functions*)
 - builds a linear classifier, SVM-style (restricted to numeric or binary class)
- RacedIncrementalLogitBoost: a kind of boosting

How much can Weka (Simple CLI) handle? – unlimited (conditions apply)

Create a huge dataset

java weka.datagenerators.classifiers.classification.LED24 –n 100000 –o C:\Users\ihw\test.arff

– Test file with 100 K instances, 5 MB

java weka.datagenerators.classifiers.classification.LED24 –n 10000000 –o C:\Users\ihw\train.arff

- Training file with 10 M instances; 0.5 GB

Use NaiveBayesUpdateable

java weka.classifiers.bayes.NaiveBayesUpdateable -t ...train.arff -T ...test.arff

- 74%; 4 mins
- Note: if no test file specified, will do cross-validation, which will fail (non-incremental)
- Try with 100 M examples (5 GB training file) no problem (40 mins)

- Explorer can handle ~ 1M instances, 25 attributes (50 MB file)
- Simple CLI works incrementally wherever it can
- Some classifier implementations are "Updateable"
 - find them with Javadoc; see Lesson 1.5 Activity
- Updateable classifiers deal with arbitrarily large files (multi GB)
 - but don't attempt cross-validation
- Working with big data can be difficult and frustrating
 - see the associated Activity

Department of Computer Science University of Waikato New Zealand

Creative Commons Attribution 3.0 Unported License

creativecommons.org/licenses/by/3.0/

weka.waikato.ac.nz