
weka.waikato.ac.nz

Ian Witten

Department of Computer Science
University of Waikato

New Zealand

Advanced Data Mining with Weka

Class 3 – Lesson 1

LibSVM and LibLINEAR

Lesson 3.1: LibSVM and LibLINEAR

Lesson 3.1 LibSVM and LibLINEAR

Lesson 3.2 Setting up R with Weka

Lesson 3.3 Using R to plot data

Lesson 3.4 Using R to run a classifier

Lesson 3.5 Using R to preprocess data

Lesson 3.6 Application:
Functional MRI Neuroimaging data

Class 1 Time series forecasting

Class 2 Data stream mining
in Weka and MOA

Class 3 Interfacing to R and other data
mining packages

Class 4 Distributed processing with
Apache Spark

Class 5 Scripting Weka in Python

 Written by the same people (National Taiwan University)
 LibSVM and LibLINEAR widely used outside Weka
 Weka’s most popular packages!

 Both packages implement them
– Weka already has SMO (Data Mining with Weka Lesson 4.5)
– ... but LibSVM is more flexible; LibLINEAR can be much faster

 SVMs can be linear or non-linear: “kernel” functions
 SVMs can do classification or regression

– Weka already has SMOreg for regression

 gridSearch will be used to optimize parameters for SVMs

Install the packages LibSVM and LibLINEAR (also install gridSearch)

LibSVM and LibLINEAR

Support Vector Machines

LibSVM and LibLINEAR

SMO/SMOreg LibSVM LibLINEAR

Linear SVM? yes yes yes

Non-linear kernels? yes yes no

1-class classification? no yes no
... two-class classification when there are no negative examples

Logistic regression? no no yes
... Logistic classifier (Data Mining with Weka Lesson 4.4)

Very fast? no no yes!

L1 norm? no no yes
... minimize sum of absolute values, not sum of squares

Speed test
 Data generator: 10,000 instances of LED24 data, percentage split evaluation

– LibLinear 2 secs to build model
– LibSVM, default parameters (RBF kernel) 18 secs

choose linear kernel 10 sec
– SMO, default parameters (linear) 21 secs

LibLINEAR

LibSVM and LibLINEAR

Linear boundary

LibSVM and LibLINEAR

 small margin
 0 errors on training data

Linear boundary

LibSVM and LibLINEAR

 small margin
 0 errors on training data
 4 errors on test data

Linear boundary

LibSVM and LibLINEAR

 small margin
 0 errors on training data
 4 errors on test data

Linear boundary

LibSVM and LibLINEAR

 small margin

Linear boundary

LibSVM and LibLINEAR

 large margin
 1 error on training data

Linear boundary

LibSVM and LibLINEAR

 small margin
 1 error on training data
 0 errors on test data

Linear boundary

LibSVM and LibLINEAR

 LibLINEAR
 LibSVM with linear kernel

(or SMO)
 21 errors

on the training set

Nonlinear boundary

LibSVM and LibLINEAR

 LibSVM, RBF kernel
default parameters
cost=1, gamma=0

 9 errors on training set

Do it!
with BoundaryVisualizer
 in Explorer

Nonlinear boundary

LibSVM and LibLINEAR

 LibSVM:
OK parameters
cost=10, gamma=0

 0 errors on training set
 Poor generalization

Nonlinear boundary

LibSVM and LibLINEAR

 LibSVM
optimized parameters
cost=1000, gamma=10

 0 errors on training set
Good generalization

Optimizing LibSVM parameters
with gridSearch

LibSVM and LibLINEAR

gridSearch defaults

LibSVM and LibLINEAR

C: 103, 102, 10, 1, 10–1, 10–2, 10–3

kernel.gamma: 103, 102, 10, 1, 10–1, 10–2, 10–

3

use SMOreg (regression)

evaluate using correlation coefficient

from 103

down to 10–3

10 i

steps of 1

from 103

down to 10–3

10 i

steps of 1

Optimizing LibSVM parameters
with gridSearch

LibSVM and LibLINEAR

LibSVM: parameters cost, gamma

cost: 103, 102, 10, 1, 10–1, 10–2, 10–3

gamma: 103, 102, 10, 1, 10–1, 10–2, 10–3

use LibSVM (classification)

evaluate using Accuracy

 cost = 1000, gamma = 10

from 103

down to 10–3

10 i

steps of 1

from 103

down to 10–3

10 i

steps of 1

cost

gamma

LibSVM

Accuracy

Optimizing LibSVM parameters
with gridSearch

LibSVM and LibLINEAR

(RBFKernel): c, kernel.gamma

c: 103, 102, 10, 1, 10–1, 10–2, 10–3

kernel.gamma: 103, 102, 10, 1, 10–1, 10–2, 10–

3

use SMO (classification)

evaluate using Accuracy

from 103

down to 10–3

10 i

steps of 1

from 103

down to 10–3

10 i

steps of 1

c

kernel.gamma

SMO

Accuracy

SMO

LibSVM and LibLINEAR

 LibLINEAR: all things linear
– linear SVMs
– logistic regression
– can use “L1 norm”

• minimize sum of absolute values, not sum of squares

 LibSVM: all things SVM
 Practical advice for using SVMs:

– first use a linear SVM
– then select RBF kernel

... and optimize cost, gamma using gridSearch
Reference: Hsu, Chang and Lin (2010) “A practical guide to support vector
classification” http://www.csie.ntu.edu.tw/~cjlin/papers/guide/guide.pdf

weka.waikato.ac.nz

Eibe Frank

Department of Computer Science
University of Waikato

New Zealand

Advanced Data Mining with Weka

Class 3 – Lesson 2

Setting up R with Weka

Lesson 3.2: Setting up R with Weka

Lesson 3.1 LibSVM and LibLINEAR

Lesson 3.2 Setting up R with Weka

Lesson 3.3 Using R to plot data

Lesson 3.4 Using R to run a classifier

Lesson 3.5 Using R to preprocess data

Class 1 Time series forecasting

Class 2 Data stream mining
in Weka and MOA

Class 3 Interfacing to R and other data
mining packages

Class 4 Distributed processing with
Apache Spark

Class 5 Scripting Weka in Python
Lesson 3.6 Application:

Functional MRI Neuroimaging data

Setting up R with Weka

 The instructions are based on using 64-bit Windows, 64-bit Java, and 64-bit
R, and assume admin rights
– Mixing 32-bit versions with 64-bit ones will produce problems, e.g., the installation

process for Weka’s RPlugin may halt for no apparent reason
– If you have 32-bit Windows, use 32-bit Java and 32-bit R
– Support for R in Weka can also be installed on OS X and Linux: refer to the installation

instructions that come with Weka’s RPlugin

 There are four main steps to the installation process:
– Downloading and installing R
– Installing the rJava package in R
– Setting up some Windows environment variables
– Downloading and installing the RPlugin package for Weka

Downloading and installing R

 Choose a download mirror from

https://cran.r-project.org/mirrors.html

 Choose to download the binary distribution for Windows
 Choose the “base” version of the distribution
 Once downloaded, execute the installer
 Accept all default settings for install options, but untick 32-bit files when

asked to choose R components to install
– If you are using 32-bit Windows, untick 64-bit files instead

Installing the rJava package in R

 Start the R console, e.g., by double-clicking on the shortcut that the installer
has put on your desktop

 In the R console, type install.packages("rJava") and press the return key on
your keyboard

 Note that this will only work if you have direct web access, i.e., if your web
access is not provided by a proxy computer
(see the next slide on what to do if you are behind a proxy)

 In the pop-up menu, choose a mirror to download from
 Accept defaults when asked for install options
 Close R once the package has been installed, by typing q(), without saving the

workspace

For users with web connections provided by a proxy

 If your organization uses a proxy computer, you need to set up some
Windows environment variables before starting R

 Using the Windows search functionality, search for variables, and select Edit
environment variables for your account

 Use the New... button to add two new variables, with names HTTP_PROXY
and HTTPS_PROXY

 Set their value to the URL and port number of your organisation's proxy
server, separated by a comma
– For example, at Waikato, this would be http://proxy.waikato.ac.nz:8080

 Then, when you install a package in R, you will be asked for your proxy user
name and password

Setting up the environment variables

 We need to set up some environment variables so that Weka’s RPlugin knows
where R and its libraries are located

 Using the Windows search functionality, search for variables, and select Edit
environment variables for your account

 Use the New... button to add two new variables, with names R_HOME and
R_LIBS_USER (see screenshot on next slide)

 Set the value of R_HOME to the path of the folder containing the R software
(it should end in something like R-X.X.X)

 Set the value of R_LIBS_USER to the path of the folder containing the newly
installed rJava package for R

 Also, use the Edit... button to add the path of the folder containing the R
executable to the PATH variable (after adding a semicolon)
– If there is no PATH variable, make a new one

Screenshot of environment variables

Make sure you
don’t use quotes
in the variable
values.

In this example, there was
no pre-existing PATH
variable, so the location of
the R executable is the only
value of the PATH variable.

Installing the RPlugin for Weka

 Start Weka, and from the Tools menu in the GUIChooser, select the Weka
package manager

 Choose RPlugin from the list of packages and press Install
– If your internet access is through a proxy server, see Using a HTTP proxy at

http://weka.wikispaces.com/How+do+I+use+the+package+manager

– for information on how to configure Weka to use the proxy server
 In the pop-up dialogues, press OK
 Once the plugin has been installed, restart Weka
 Start the Weka Explorer, load the iris data, go to the new RConsole tab, and

type plot(rdata)
 Once you have pressed return, the iris data will be plotted

What can possibly go wrong?

 Many things…, too many to cover here!
 If you run into problems with the installation process, don’t despair, just get

in touch with the Weka community for help

weka.waikato.ac.nz

Eibe Frank

Department of Computer Science
University of Waikato

New Zealand

Advanced Data Mining with Weka

Class 3 – Lesson 3

Using R to plot data

Lesson 3.6 Application:
Functional MRI Neuroimaging data

Lesson 3.3: Using R to plot data

Lesson 3.1 LibSVM and LibLINEAR

Lesson 3.2 Setting up R with Weka

Lesson 3.3 Using R to plot data

Lesson 3.4 Using R to run a classifier

Lesson 3.5 Using R to preprocess data

Class 1 Time series forecasting

Class 2 Data stream mining
in Weka and MOA

Class 3 Interfacing to R and other data
mining packages

Class 4 Distributed processing with
Apache Spark

Class 5 Scripting Weka in Python

First steps with ggplot2

 We need some data to work with, so first load the Iris data into the
Preprocess panel of the Explorer

 To plot data with R, go to the RConsole
 Before we can use ggplot2, we need to download and install the

corresponding R package:
– To install the package, type install.packages("ggplot2") and press return
– To load the package, type library(ggplot2) and press return

 Try entering the following to see if the package works:
ggplot(rdata, aes(x = petallength)) + geom_density()

 This should give you a kernel density estimate for the petal length of the Iris
flowers

The data layer

 The first layer is the data layer, which specifies the data we want to plot
 The data layer is specified using the ggplot() function
 The first argument of this function is the data we want to plot
 We use rdata here, because this is the name of the data that has been

transferred into R from the Preprocess panel
 The second argument is often a call to the aes() function, which maps data

to a plot’s visual aspects and components
 We use it to define which attributes are plotted, and how parts of the plot

are colored and filled

The geometry layer(s)

 Once the data layer has been defined, we can define geometry layers to
specify how the data is plotted

 In the previous example, we specified a kernel density plot by using the
geom_density() function
– The kernel density estimate generated this way is too wide, but we can use the xlim()

function to change the range of the x axis:
ggplot(rdata, aes(x = petallength)) + geom_density() + xlim(0,8)

 We can use the adjust parameter to scale the kernel bandwidth that is used
by the estimate
ggplot(rdata, aes(x = petallength)) + geom_density(adjust = 0.5) + xlim(0,8)

 Using values smaller than 1 makes the density estimate fit the data more
closely and we get more peaks and valleys

Plotting classification data

 In classification problems, we often want to visualize data on a per-class
basis to detect discriminative information

 We can do that quite easily with ggplot2, e.g., by plotting separate color-
coded estimates for each class value:
ggplot(rdata, aes(x = petallength, color = class)) + geom_density(adjust = 0.5) + xlim(0,8)

 We can also fill the area under the plots based on class color:
ggplot(rdata, aes(x = petallength, color = class, fill = class)) + geom_density(adjust = 0.5) +
xlim(0,8)

 We can specify the level of transparency by using the alpha parameter as a
geometry-specific aesthetic:
ggplot(rdata, aes(x = petallength, color = class, fill = class)) + geom_density(adjust = 0.5,
alpha = 0.5) + xlim(0,8)

Generating multiple separate plots (“facets”)

 We can use facets to display multiple per-attribute plots
 Generated data has three attributes: class, variable, value
 First, we need to load the reshape2 library, which has been installed with the

ggplot2 library:
library(reshape2)

 Then, we use the melt() function to transform the data:
ndata = melt(rdata)

 To plot a facet grid, with one row facet per attribute:
ggplot(ndata, aes(x = value, color = class, fill = class)) + geom_density(adjust = 0.5, alpha =
0.5) + xlim(0,8) + facet_grid(variable ~ .)

 We can also use column facets:
ggplot(ndata, aes(x = value, color = class, fill = class)) + geom_density(adjust = 0.5, alpha =
0.5) + xlim(0,8) + facet_grid(. ~ variable)

Printing a plot into a PDF

 Use pdf() function to redirect output of plot from screen to a PDF file, e.g.:
pdf("/Users/eibe/Documents/Test.pdf")

 Reissue command, so that plot is written to the file:
ggplot(ndata, aes(x = value, color = class, fill = class)) + geom_density(adjust = 0.5, alpha =
0.5) + xlim(0,8) + facet_grid(. ~ variable)

 Once the data has been plotted to the file, redirect output back to screen:
dev.off()

 The resulting PDF can be viewed with any PDF reader and integrated into
other documents

One more example of a geometry layer: box plots

 Assuming we have generated ndata using the melt() function as before, we
can plot box plots for each attribute:
ggplot(ndata, aes(y = value, x = class, color = class)) + geom_boxplot() + facet_grid(. ~
variable)

 This will generate four column facets containing box plots, with one box plot
per class value in each facet

 The latter is achieved by using the nominal attribute class as the column
attribute for each facet’s box plot

 The color is also based on the class, so that columns and colors match for
each box plot

Further information

 There is a very comprehensive web site with documentation for ggplot2:

http://ggplot2.org/

 This site also enables you to subscribe to a mailing list where you can get
help

 There are several books dedicated to ggplot2, including two that are
mentioned at the above location

weka.waikato.ac.nz

Eibe Frank

Department of Computer Science
University of Waikato

New Zealand

Advanced Data Mining with Weka

Class 3 – Lesson 4

Using R to run a classifier

Lesson 3.6 Application:
Functional MRI Neuroimaging data

Lesson 3.4: Using R to run a classifier

Lesson 3.1 LibSVM and LibLINEAR

Lesson 3.2 Setting up R with Weka

Lesson 3.3 Using R to plot data

Lesson 3.4 Using R to run a classifier

Lesson 3.5 Using R to preprocess data

Class 1 Time series forecasting

Class 2 Data stream mining
in Weka and MOA

Class 3 Interfacing to R and other data
mining packages

Class 4 Distributed processing with
Apache Spark

Class 5 Scripting Weka in Python

Using supervised learning algorithms from R in Weka

 R has a large collection of libraries with supervised learning algorithms for
regression and classification

 The MLR package for R provides a unified interface to many of these
algorithms

 Weka’s RPlugin contains MLRClassifier, which provides access to the
regression and classification schemes in MLR

 In this way, the regression and classification schemes in MLR can be used like
any other classifier in Weka
– For example, it is possible to run them in the Explorer to evaluate them on a particular

dataset, or in the Experimenter to compare to other algorithms

Using the MLRClassifier

 To try MLRClassifier, load some data into the Preprocess panel of the Exlorer,
e.g., the diabetes data

 Then, switch to the Classify panel and select the Choose button to pop up the
menu with available classifiers

 It will take a little while for the menu to pop up because Weka will download
and install the mlr package in R
– This only happens once, when the package is first required

 Now, expand the new mlr item in the menu and select MLRClassifier
 Pressing the Start button will run MLRClassifier on the data

Considering the output

 In the output, you will see that MLRClassifier has learned a
classification tree using MLR’s classif.rpart method

 We can also see that the algorithm comes from R’s rpart package
 The R package rpart contains an implementation of the famous

CART learning algorithm developed by Breiman et al.
 The output also shows what properties the algorithm has

– This particular algorithm can handle multi-class problems, missing values,
numeric attributes, nominal attributes (factors), and instance weights

– It can also deal with ordinal attributes, but this is not currently supported
by Weka

– The list of properties also shows that the classifier can produce class
probability estimates for a test instance

Organization of learning algorithms in MLR

 MLRClassifier provides access to classification and regression algorithms
supported by the mlr package

 The list of all integrated algorithms supported by mlr can be found at
http://mlr-org.github.io/mlr-tutorial/release/html/integrated_learners/

 Most of the regression and classification algorithms in this list are available
through MLRClassifier

 To choose a different algorithm, pop up the GenericObjectEditor for
MLRClassifier by clicking on the text box with the classifier's configuration

 Selecting the RLearner pop-up menu in the GenericObjectEditor, you can
choose from regression (regr.*) and classification (classif.*) algorithms

Choosing a different classifier: random ferns

 Random ferns, implemented in the R package rFerns, were originally
developed for computer vision tasks

 A random fern can be viewed as a restricted decision tree where all nodes at
the same level apply the same test

 We can select random ferns in MLRClassifier by choosing classif.rFerns
– The first time we select a classifier from the menu in MLRClassifier, there is a delay

because Weka has to download and install the corresponding R package

 By default, classif.Ferns uses 1,000 ferns of depth 5
 Accuracy is not great, so let us try changing parameters...

Specifying parameters for the learning algorithm in R

 Parameters can be passed to a learning algorithm in mlr by specifying them
in textual form in the GenericObjectEditor

 The parameter specification is entered into the learnerParams field
 To find out what parameters are accepted, we need to check the

documentation for the learning algorithm in R
 The easiest way to find this info is to click on the package link from the web

page with learners integrated into MLR
– This brings up the corresponding page for the R package at

http://www.rdocumentation.org

– Select the link for the learning method from this page

Growing different ferns

 The package documentation for the rferns method lists several
possible arguments

 We can ignore the arguments specifying the input data because
these are automatically generated by MLRClassifier

 We can see that we can change the depth of the ferns by
specifying a value of the depth parameter

 To get ferns of depth two, we can enter depth = 2 into the
learnerParams field in the GenericObjectEditor for MLRClassifier

 We can also specify multiple parameters in comma-separated
fashion, e.g., we can enter depth = 2, ferns = 100

Further information

 The MLR package has many other facilities for machine learning in R, e.g.,
running experiments in the R environment

 There is an extensive tutorial on how to use MLR from R at
https://mlr-org.github.io/mlr-tutorial/release/html/

 The MLR package is constantly being expanded and every release adds new
algorithms
– When new releases come out, the RPlugin package needs to be updated so that these

algorithms become available through MLRClassifier in Weka

 Every official R package has a dedicated web page with a link to a PDF
reference manual for this package
– For example, the URL for the rFerns package is

https://cran.r-project.org/web/packages/rFerns/index.html

weka.waikato.ac.nz

Eibe Frank

Department of Computer Science
University of Waikato

New Zealand

Advanced Data Mining with Weka

Class 3 – Lesson 5

Using R to preprocess data

Lesson 3.6 Application:
Functional MRI Neuroimaging data

Lesson 3.5: Using R to preprocess data

Lesson 3.1 LibSVM and LibLINEAR

Lesson 3.2 Setting up R with Weka

Lesson 3.3 Using R to plot data

Lesson 3.4 Using R to run a classifier

Lesson 3.5 Using R to preprocess data

Class 1 Time series forecasting

Class 2 Data stream mining
in Weka and MOA

Class 3 Interfacing to R and other data
mining packages

Class 4 Distributed processing with
Apache Spark

Class 5 Scripting Weka in Python

Using R to preprocess data

 R has a large collection of libraries with preprocessing tools that are
potentially useful for machine learning in Weka

 Weka's KnowledgeFlow GUI has an RScriptExecutor plugin that can be used
to run R scripts as part of a flow
– To see it, click Plugins on the left-hand side of the KnowledgeFlow panel
– Data can be fed into into the RScriptExecutor component by connecting it with a

component that produces a dataset via a dataSet connection
– This data will be passed into R as an R data frame
– It can be processed by the R script specified in the RScriptExecutor component and the

resulting data frame can be passed back into the Weka environment
– This is done by providing an outgoing dataSet connection from the RScriptExecutor

component
– If the R script generates textual output or an image, this output can also be obtained by

using appropriate connections (text or image)

A simple example

 Assume we want to remove the last attribute from the Iris data
 First, we configure an ArffLoader component to load the data
 Then, we place the RScriptExecutor component on the canvas
 Now, we can connect the two using a dataSet component
 To visualize the processed data we can use a ScatterPlotMatrix

component, which we can put on the canvas but not yet connect
 To process the data, we need to configure the RScriptExecutor by

entering an appropriate script
 The single-line script rdata[1:4] (square brackets!) creates a data frame

from the first four attributes of the incoming data (rdata)
 Now, we can make a dataSet connection to the ScatterPlotMatrix

Installing an R package using the R Console perspective

 To do something more sophisticated using R, let us apply ICA
 ICA (independent component analysis) attempts to decompose

the input data into statistically independent components
 An implementation is available in R’s fastICA package
 To install the package using the KnowledgeFlow, we first need to

enable its R Console perspective
 Once we have enabled it, we can go to the R Console tab and issue

R commands, e.g., install the fastICA package by entering

install.packages("fastICA")

Another example script: using ICA

 Now that we have installed the package, we can use fastICA in our R script
 First, we need to load the library into R using library(fastICA)
 Then, we may want to set up a variable specifying the number of components

we would like to extract using ICA
– Assume we want to use as many components as there are predictor attributes in the

input, so we can use num = ncol(rdata) – 1 for this, where ncol() gives the number of
attributes in rdata

 To apply fastICA to the reduced Iris data and extract num components, we can
use fastICA(rdata[1:num], num)

 This function returns a list of results, we want S, so we use fastICA(...)$S
– Check the R documenation for fastICA to see what values are returned by this function

 This will produce an R matrix, which we need to turn into an R data frame
using the data.frame() function, so that Weka can import the data

The complete script

 The complete script for the RScriptExecutor is:

library(fastICA)
num = ncol(rdata) – 1
data.frame(fastICA(rdata[1:num], num)$S)

 Note that the output of the fastICA() function is non-deterministic
 This means the scatter plot you will get will look slightly different compared

to the one shown in the video

Running a classifier on the transformed data

 We can visualize the resulting data using ScatterPlotMatrix
 To apply a classifier, we need to reattach the class labels to the

transformed data
 Assume we have stored the result returned by data.frame(...)

in a variable called d, using d = data.frame(...)
 We can use cbind(d, rdata[num + 1]) to bind the columns from

d and the class column from rdata into a single data frame
 If this is the last line in the R script, the resulting data frame

will be passed back into the Weka environment
 Again, we can use a dataSet connection to obtain this data

Running naive Bayes on the ICA-transformed data

 Naive Bayes assumes (conditional) independence, so it seems like a good
candidate to run on the transformed data

 We use the standard KnowledgeFlow process for applying a cross-validation
to a dataset to do this
– I.e., we connect RScriptExecutor to ClassAssigner, which we connect to

CrossValidationFoldMaker, which, in turn, we connect to NaiveBayes
– Then, we connect NaiveBayes to ClassifierPerformanceEvaluator
– Finally, we establish a text connection from ClassifierPerformanceEvaluator to a

TextViewer so that we can view the performance scores obtained

 The resulting accuracy is high, 98% on the Iris data in my case! Note that the
outcome is non-deterministic (see above).

 Strictly speaking, this process applies semi-supervised learning because ICA is
given the full (unlabeled) dataset

The knowledge flow for running the classifier

Further information

 Some other potentially useful transformation methods in R:
– cmdscale performs classic multidimensional scaling: data.frame(cmdscale(dist(rdata[1:num]), k = 2))

– isoMDS from the MASS package performs nonmetric multidimensional scaling (assuming the data
has no duplicates): data.frame(isoMDS(dist(rdata[1:num]), k = 2))

– kpca from the kernlab package performs kernel (i.e., non-linear) PCA:
data.frame(rotated(kpca(~ ., data = rdata[1:num], kernel = "rbfdot", kpar = list(sigma=0.01), features = 2)))

– prcurve from the analogue package extracts principal curves: data.frame(prcurve(rdata[1:num])$s)

– isomap from the vegan package implements Isomap: plot(isomap(dist(rdata[1:num]), k = 51))

– lle from the lle package performs locally linear embeddings:
data.frame(lle(rdata[1:num], m = 2, k = 3)$Y)

 All these methods are unsupervised
– Note that the above isomap command plots data and does not create a data frame

 Care needs to be taken when applying supervised methods so that the test data is not
used to build the transformation model!

weka.waikato.ac.nz

Pamela Douglas

Department of Psychiatry and Biobehavioral Sciences
David Geffen School of Medicine

University of California, Los Angeles
USA

Advanced Data Mining with Weka

Class 3 – Lesson 6

Application: Functional MRI Neuroimaging data

Lesson 3.6 Application:
Functional MRI Neuroimaging data

Lesson 3.6: Application: Functional MRI Neuroimaging data

Lesson 3.1 LibSVM and LibLINEAR

Lesson 3.2 Setting up R with Weka

Lesson 3.3 Using R to plot data

Lesson 3.4 Using R to run a classifier

Lesson 3.5 Using R to preprocess data

Class 1 Time series forecasting

Class 2 Data stream mining
in Weka and MOA

Class 3 Interfacing to R and other data
mining packages

Class 4 Distributed processing with
Apache Spark

Class 5 Scripting Weka in Python

Application: Functional MRI Neuroimaging data

 ADHD200 Global Machine Learning Competition
– Data from Multiple sites around the globe

 Goal: Predict Diagnosis
– Typically Developing (TD) or ADHD

 Training Data 776 subjects with diagnosis label known
– Data from Multiple sites around the globe
– Structural MRI, resting state functional MRI (fMRI), demographic data

 Test Data 200 Subjects – unknown diagnosis

Challenge: Classification of High Dimensional Data
Structural MRI: 100,000 voxels
Functional MRI: voxel x time

ADHD: Attention deficit hyperactivity disorder

Application: Functional MRI Neuroimaging data

 Structural Brain Attributes were extracted using Freesurfer
 Included 9 attributes (e.g. volume) from 68 Cortical regions
 Three measures from each of the 45 subcortical and non-cortical

regions

Extracting Structural Brain Attributes

More than 700 Structural Brain Attributes

Application: Functional MRI Neuroimaging data

Resting State Functional
Connectivity

Over 100,000 Functional Neuroimaging attributes !

Functional Modular
Organization

Regional
Homogeneity

Power Spectra

Independent Components

Application: Functional MRI Neuroimaging data

The Winning team used only
demographic features!

Demographic Attributes:
- Gender, Age, IQ ,

Handedness

 Irrelevant and Redundant Features can:
– Degrade Classification Accuracy
– Increase computational Burden
– See also “Data mining with Weka”, Lesson 1.5

 Highlights the importance of
feature selection

Winning team

150
140
130
120
110
100

90
80

20

0

Application: Functional MRI Neuroimaging data

 Data from Haxby et al. (2001) “Distributed and overlapping representations of faces and objects in
ventral temporal cortex,” Science, Vol. 293

The No Free Lunch Theorem: each classifier has its own inductive bias, therefore testing out multiple
classifiers and selecting the best model can be a good idea

Activity: Learn how to do Nested Cross Validation for Parameter Tuning …. Test out Multiple Classifiers, and
Test the Importance of Using Feature Selection

• Six subjects, 12 runs each
• Each run consisted of viewing 8 object categories.
• Each object category was shown for 24 sec (500msec on, 1500msec rest).

Application: Functional MRI Neuroimaging data

 Functional MRI is high dimensional big data
 Feature Selection or regularization is highly recommended
 WEKA can easily combine multiple feature categories for

classification (e.g. gender, age, and fMRI data)
 Testing a variety of models or classifiers can be helpful
 Weka’s NIFTI format loader (“Brain button”)

– Loads MRI (NIFTI) files directly into WEKA for classification

weka.waikato.ac.nz

Department of Computer Science
University of Waikato

New Zealand

creativecommons.org/licenses/by/3.0/

Creative Commons Attribution 3.0 Unported License

Advanced Data Mining with Weka

	Class 3
	3.1: LibSVM and LibLINEAR
	3.2: Setting up R with Weka
	3.3: Using R to plot data
	3.4: Using R to run a classifier
	3.5: Using R to preprocess data
	3.6: Application: Functional MRI Neuroimaging data

