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 Written by the same people (National Taiwan University)
 LibSVM and LibLINEAR widely used outside Weka
 Weka’s most popular packages!

 Both packages implement them
– Weka already has SMO (Data Mining with Weka Lesson 4.5)
– ... but LibSVM is more flexible; LibLINEAR can be much faster

 SVMs can be linear or non-linear: “kernel” functions
 SVMs can do classification or regression

– Weka already has SMOreg for regression

 gridSearch will be used to optimize parameters for SVMs

Install the packages LibSVM and LibLINEAR (also install gridSearch)

LibSVM and LibLINEAR

Support Vector Machines



LibSVM and LibLINEAR

SMO/SMOreg LibSVM LibLINEAR

Linear SVM? yes yes yes

Non-linear kernels? yes yes no

1-class classification? no yes no
... two-class classification when there are no negative examples

Logistic regression? no no yes
... Logistic classifier (Data Mining with Weka Lesson 4.4)

Very fast? no no yes!

L1 norm? no no yes
... minimize sum of absolute values, not sum of squares



Speed test
 Data generator: 10,000 instances of LED24 data, percentage split evaluation

– LibLinear 2 secs to build model
– LibSVM, default parameters (RBF kernel) 18 secs

choose linear kernel 10 sec
– SMO, default parameters (linear) 21  secs

LibLINEAR

LibSVM and LibLINEAR



Linear boundary

LibSVM and LibLINEAR

 small margin
 0 errors on training data



Linear boundary

LibSVM and LibLINEAR

 small margin
 0 errors on training data
 4 errors on test data



Linear boundary

LibSVM and LibLINEAR

 small margin
 0 errors on training data
 4 errors on test data



Linear boundary

LibSVM and LibLINEAR

 small margin



Linear boundary

LibSVM and LibLINEAR

 large margin
 1 error on training data



Linear boundary

LibSVM and LibLINEAR

 small margin
 1 error on training data
 0 errors on test data



Linear boundary

LibSVM and LibLINEAR

 LibLINEAR
 LibSVM with linear kernel

(or SMO)
 21 errors

on the training set



Nonlinear boundary

LibSVM and LibLINEAR

 LibSVM, RBF kernel
default parameters
cost=1, gamma=0

 9 errors on training set

Do it!
with BoundaryVisualizer
 in Explorer



Nonlinear boundary

LibSVM and LibLINEAR

 LibSVM:
OK parameters
cost=10, gamma=0

 0 errors on training set
 Poor generalization



Nonlinear boundary

LibSVM and LibLINEAR

 LibSVM
optimized parameters
cost=1000, gamma=10

 0 errors on training set
Good generalization



Optimizing LibSVM parameters 
with gridSearch

LibSVM and LibLINEAR



gridSearch defaults

LibSVM and LibLINEAR

C: 103, 102, 10, 1, 10–1, 10–2, 10–3

kernel.gamma: 103, 102, 10, 1, 10–1, 10–2, 10–

3

use SMOreg (regression)

evaluate using correlation coefficient

from 103

down to 10–3

10 i

steps of 1

from 103

down to 10–3

10 i

steps of 1



Optimizing LibSVM parameters 
with gridSearch

LibSVM and LibLINEAR

LibSVM: parameters cost, gamma

cost: 103, 102, 10, 1, 10–1, 10–2, 10–3

gamma: 103, 102, 10, 1, 10–1, 10–2, 10–3

use LibSVM (classification)

evaluate using Accuracy

 cost = 1000, gamma = 10

from 103

down to 10–3

10 i

steps of 1

from 103

down to 10–3

10 i

steps of 1

cost

gamma

LibSVM

Accuracy



Optimizing LibSVM parameters 
with gridSearch

LibSVM and LibLINEAR

(RBFKernel): c, kernel.gamma

c: 103, 102, 10, 1, 10–1, 10–2, 10–3

kernel.gamma: 103, 102, 10, 1, 10–1, 10–2, 10–

3

use SMO (classification)

evaluate using Accuracy

from 103

down to 10–3

10 i

steps of 1

from 103

down to 10–3

10 i

steps of 1

c

kernel.gamma

SMO

Accuracy

SMO



LibSVM and LibLINEAR

 LibLINEAR: all things linear
– linear SVMs 
– logistic regression
– can use “L1 norm”

• minimize sum of absolute values, not sum of squares

 LibSVM: all things SVM
 Practical advice for using SVMs:

– first use a linear SVM
– then select RBF kernel

... and optimize cost, gamma using gridSearch
Reference: Hsu, Chang and Lin (2010) “A practical guide to support vector 
classification” http://www.csie.ntu.edu.tw/~cjlin/papers/guide/guide.pdf
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Setting up R with Weka

 The instructions are based on using 64-bit Windows, 64-bit Java, and 64-bit 
R, and assume admin rights
– Mixing 32-bit versions with 64-bit ones will produce problems, e.g., the installation 

process for Weka’s RPlugin may halt for no apparent reason 
– If you have 32-bit Windows, use 32-bit Java and 32-bit R
– Support for R in Weka can also be installed on OS X and Linux: refer to the installation 

instructions that come with Weka’s RPlugin

 There are four main steps to the installation process:
– Downloading and installing R
– Installing the rJava package in R
– Setting up some Windows environment variables
– Downloading and installing the RPlugin package for Weka



Downloading and installing R

 Choose a download mirror from 

https://cran.r-project.org/mirrors.html

 Choose to download the binary distribution for Windows
 Choose the “base” version of the distribution
 Once downloaded, execute the installer
 Accept all default settings for install options, but untick 32-bit files when 

asked to choose R components to install
– If you are using 32-bit Windows, untick 64-bit files instead



Installing the rJava package in R

 Start the R console, e.g., by double-clicking on the shortcut that the installer 
has put on your desktop

 In the R console, type install.packages("rJava") and press the return key on 
your keyboard

 Note that this will only work if you have direct web access, i.e., if your web 
access is not provided by a proxy computer
(see the next slide on what to do if you are behind a proxy)

 In the pop-up menu, choose a mirror to download from
 Accept defaults when asked for install options
 Close R once the package has been installed, by typing q(), without saving the 

workspace



For users with web connections provided by a proxy

 If your organization uses a proxy computer, you need to set up some 
Windows environment variables before starting R

 Using the Windows search functionality, search for variables, and select Edit 
environment variables for your account

 Use the New... button to add two new variables, with names HTTP_PROXY
and HTTPS_PROXY

 Set their value to the URL and port number of your organisation's proxy 
server, separated by a comma
– For example, at Waikato, this would be http://proxy.waikato.ac.nz:8080

 Then, when you install a package in R, you will be asked for your proxy user 
name and password



Setting up the environment variables

 We need to set up some environment variables so that Weka’s RPlugin knows 
where R and its libraries are located

 Using the Windows search functionality, search for variables, and select Edit 
environment variables for your account

 Use the New... button to add two new variables, with names R_HOME and 
R_LIBS_USER (see screenshot on next slide)

 Set the value of R_HOME to the path of the folder containing the R software 
(it should end in something like R-X.X.X)

 Set the value of R_LIBS_USER to the path of the folder containing the newly 
installed rJava package for R

 Also, use the Edit... button to add the path of the folder containing the R 
executable to the PATH variable (after adding a semicolon)
– If there is no PATH variable, make a new one



Screenshot of environment variables

Make sure you 
don’t use quotes 
in the variable 
values.

In this example, there was 
no pre-existing PATH 
variable, so the location of 
the R executable is the only 
value of the PATH variable.



Installing the RPlugin for Weka

 Start Weka, and from the Tools menu in the GUIChooser, select the Weka 
package manager

 Choose RPlugin from the list of packages and press Install
– If your internet access is through a proxy server, see Using a HTTP proxy at 

http://weka.wikispaces.com/How+do+I+use+the+package+manager

– for information on how to configure Weka to use the proxy server
 In the pop-up dialogues, press OK
 Once the plugin has been installed, restart Weka
 Start the Weka Explorer, load the iris data, go to the new RConsole tab, and 

type plot(rdata)
 Once you have pressed return, the iris data will be plotted



What can possibly go wrong?

 Many things…, too many to cover here!
 If you run into problems with the installation process, don’t despair, just get 

in touch with the Weka community for help



weka.waikato.ac.nz

Eibe Frank

Department of Computer Science
University of Waikato

New Zealand

Advanced Data Mining with Weka

Class 3 – Lesson 3

Using R to plot data



Lesson 3.6 Application: 
Functional MRI Neuroimaging data

Lesson 3.3: Using R to plot data

Lesson 3.1 LibSVM and LibLINEAR

Lesson 3.2 Setting up R with Weka

Lesson 3.3 Using R to plot data

Lesson 3.4 Using R to run a classifier

Lesson 3.5 Using R to preprocess data

Class 1 Time series forecasting

Class 2 Data stream mining
in Weka and MOA

Class 3 Interfacing to R and other data 
mining packages

Class 4 Distributed processing with 
Apache Spark

Class 5 Scripting Weka in Python



First steps with ggplot2

 We need some data to work with, so first load the Iris data into the 
Preprocess panel of the Explorer

 To plot data with R, go to the RConsole
 Before we can use ggplot2, we need to download and install the 

corresponding R package:
– To install the package, type install.packages("ggplot2") and press return
– To load the package, type library(ggplot2) and press return

 Try entering the following to see if the package works:
ggplot(rdata, aes(x = petallength)) + geom_density()

 This should give you a kernel density estimate for the petal length of the Iris 
flowers



The data layer

 The first layer is the data layer, which specifies the data we want to plot
 The data layer is specified using the ggplot() function
 The first argument of this function is the data we want to plot
 We use rdata here, because this is the name of the data that has been 

transferred into R from the Preprocess panel
 The second argument is often a call to the aes() function, which maps data 

to a plot’s visual aspects and components
 We use it to define which attributes are plotted, and how parts of the plot 

are colored and filled



The geometry layer(s)

 Once the data layer has been defined, we can define geometry layers to 
specify how the data is plotted

 In the previous example, we specified a kernel density plot by using the 
geom_density() function
– The kernel density estimate generated this way is too wide, but we can use the xlim()

function to change the range of the x axis:
ggplot(rdata, aes(x = petallength)) + geom_density() + xlim(0,8)

 We can use the adjust parameter to scale the kernel bandwidth that is used 
by the estimate
ggplot(rdata, aes(x = petallength)) + geom_density(adjust = 0.5) + xlim(0,8)

 Using values smaller than 1 makes the density estimate fit the data more 
closely and we get more peaks and valleys



Plotting classification data

 In classification problems, we often want to visualize data on a per-class 
basis to detect discriminative information

 We can do that quite easily with ggplot2, e.g., by plotting separate color-
coded estimates for each class value:
ggplot(rdata, aes(x = petallength, color = class)) + geom_density(adjust = 0.5) + xlim(0,8)

 We can also fill the area under the plots based on class color:
ggplot(rdata, aes(x = petallength, color = class, fill = class)) + geom_density(adjust = 0.5) + 
xlim(0,8)

 We can specify the level of transparency by using the alpha parameter as a 
geometry-specific aesthetic:
ggplot(rdata, aes(x = petallength, color = class, fill = class)) + geom_density(adjust = 0.5, 
alpha = 0.5) + xlim(0,8)



Generating multiple separate plots (“facets”)

 We can use facets to display multiple per-attribute plots
 Generated data has three attributes: class, variable, value
 First, we need to load the reshape2 library, which has been installed with the 

ggplot2 library:
library(reshape2)

 Then, we use the melt() function to transform the data:
ndata = melt(rdata)

 To plot a facet grid, with one row facet per attribute: 
ggplot(ndata, aes(x = value, color = class, fill = class)) + geom_density(adjust = 0.5, alpha = 
0.5) + xlim(0,8) + facet_grid(variable ~ .)

 We can also use column facets:
ggplot(ndata, aes(x = value, color = class, fill = class)) + geom_density(adjust = 0.5, alpha = 
0.5) + xlim(0,8) + facet_grid(. ~ variable)



Printing a plot into a PDF

 Use pdf() function to redirect output of plot from screen to a PDF file, e.g.:
pdf("/Users/eibe/Documents/Test.pdf")

 Reissue command, so that plot is written to the file:
ggplot(ndata, aes(x = value, color = class, fill = class)) + geom_density(adjust = 0.5, alpha = 
0.5) + xlim(0,8) + facet_grid(. ~ variable)

 Once the data has been plotted to the file, redirect output back to screen:
dev.off()

 The resulting PDF can be viewed with any PDF reader and integrated into 
other documents



One more example of a geometry layer: box plots

 Assuming we have generated ndata using the melt() function as before, we 
can plot box plots for each attribute:
ggplot(ndata, aes(y = value, x = class, color = class)) + geom_boxplot() + facet_grid(. ~ 
variable)

 This will generate four column facets containing box plots, with one box plot 
per class value in each facet

 The latter is achieved by using the nominal attribute class as the column 
attribute for each facet’s box plot

 The color is also based on the class, so that columns and colors match for 
each box plot



Further information

 There is a very comprehensive web site with documentation for ggplot2:

http://ggplot2.org/

 This site also enables you to subscribe to a mailing list where you can get 
help

 There are several books dedicated to ggplot2, including two that are 
mentioned at the above location
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Using supervised learning algorithms from R in Weka

 R has a large collection of libraries with supervised learning algorithms for 
regression and classification

 The MLR package for R provides a unified interface to many of these 
algorithms

 Weka’s RPlugin contains MLRClassifier, which provides access to the 
regression and classification schemes in MLR

 In this way, the regression and classification schemes in MLR can be used like 
any other classifier in Weka
– For example, it is possible to run them in the Explorer to evaluate them on a particular 

dataset, or in the Experimenter to compare to other algorithms



Using the MLRClassifier

 To try MLRClassifier, load some data into the Preprocess panel of the Exlorer, 
e.g., the diabetes data

 Then, switch to the Classify panel and select the Choose button to pop up the 
menu with available classifiers

 It will take a little while for the menu to pop up because Weka will download 
and install the mlr package in R
– This only happens once, when the package is first required

 Now, expand the new mlr item in the menu and select MLRClassifier
 Pressing the Start button will run MLRClassifier on the data



Considering the output

 In the output, you will see that MLRClassifier has learned a 
classification tree using MLR’s classif.rpart method

 We can also see that the algorithm comes from R’s rpart package
 The R package rpart contains an implementation of the famous 

CART learning algorithm developed by Breiman et al.
 The output also shows what properties the algorithm has

– This particular algorithm can handle multi-class problems, missing values, 
numeric attributes, nominal attributes (factors), and instance weights

– It can also deal with ordinal attributes, but this is not currently supported 
by Weka

– The list of properties also shows that the classifier can produce class 
probability estimates for a test instance



Organization of learning algorithms in MLR

 MLRClassifier provides access to classification and regression algorithms 
supported by the mlr package

 The list of all integrated algorithms supported by mlr can be found at
http://mlr-org.github.io/mlr-tutorial/release/html/integrated_learners/

 Most of the regression and classification algorithms in this list are available 
through MLRClassifier

 To choose a different algorithm, pop up the GenericObjectEditor for 
MLRClassifier by clicking on the text box with the classifier's configuration

 Selecting the RLearner pop-up menu in the GenericObjectEditor, you can 
choose from regression (regr.*) and classification (classif.*) algorithms



Choosing a different classifier: random ferns

 Random ferns, implemented in the R package rFerns, were originally 
developed for computer vision tasks

 A random fern can be viewed as a restricted decision tree where all nodes at 
the same level apply the same test

 We can select random ferns in MLRClassifier by choosing classif.rFerns
– The first time we select a classifier from the menu in MLRClassifier, there is a delay 

because Weka has to download and install the corresponding R package

 By default, classif.Ferns uses 1,000 ferns of depth 5
 Accuracy is not great, so let us try changing parameters...



Specifying parameters for the learning algorithm in R

 Parameters can be passed to a learning algorithm in mlr by specifying them 
in textual form in the GenericObjectEditor

 The parameter specification is entered into the learnerParams field
 To find out what parameters are accepted, we need to check the 

documentation for the learning algorithm in R
 The easiest way to find this info is to click on the package link from the web 

page with learners integrated into MLR
– This brings up the corresponding page for the R package at 

http://www.rdocumentation.org

– Select the link for the learning method from this page



Growing different ferns

 The package documentation for the rferns method lists several 
possible arguments

 We can ignore the arguments specifying the input data because 
these are automatically generated by MLRClassifier

 We can see that we can change the depth of the ferns by 
specifying a value of the depth parameter

 To get ferns of depth two, we can enter depth = 2 into the 
learnerParams field in the GenericObjectEditor for MLRClassifier

 We can also specify multiple parameters in comma-separated 
fashion, e.g., we can enter depth = 2, ferns = 100



Further information

 The MLR package has many other facilities for machine learning in R, e.g., 
running experiments in the R environment

 There is an extensive tutorial on how to use MLR from R at
https://mlr-org.github.io/mlr-tutorial/release/html/

 The MLR package is constantly being expanded and every release adds new 
algorithms
– When new releases come out, the RPlugin package needs to be updated so that these 

algorithms become available through MLRClassifier in Weka

 Every official R package has a dedicated web page with a link to a PDF 
reference manual for this package
– For example, the URL for the rFerns package is

https://cran.r-project.org/web/packages/rFerns/index.html
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Using R to preprocess data

 R has a large collection of libraries with preprocessing tools that are 
potentially useful for machine learning in Weka

 Weka's KnowledgeFlow GUI has an RScriptExecutor plugin that can be used 
to run R scripts as part of a flow
– To see it, click Plugins on the left-hand side of the KnowledgeFlow panel
– Data can be fed into into the RScriptExecutor component by connecting it with a 

component that produces a dataset via a dataSet connection
– This data will be passed into R as an R data frame
– It can be processed by the R script specified in the RScriptExecutor component and the 

resulting data frame can be passed back into the Weka environment
– This is done by providing an outgoing dataSet connection from the RScriptExecutor

component
– If the R script generates textual output or an image, this output can also be obtained by 

using appropriate connections (text or image)



A simple example

 Assume we want to remove the last attribute from the Iris data
 First, we configure an ArffLoader component to load the data
 Then, we place the RScriptExecutor component on the canvas
 Now, we can connect the two using a dataSet component
 To visualize the processed data we can use a ScatterPlotMatrix

component, which we can put on the canvas but not yet connect
 To process the data, we need to configure the RScriptExecutor by 

entering an appropriate script
 The single-line script rdata[1:4] (square brackets!) creates a data frame 

from the first four attributes of the incoming data (rdata)
 Now, we can make a dataSet connection to the ScatterPlotMatrix



Installing an R package using the R Console perspective

 To do something more sophisticated using R, let us apply ICA
 ICA (independent component analysis) attempts to decompose 

the input data into statistically independent components
 An implementation is available in R’s fastICA package
 To install the package using the KnowledgeFlow, we first need to 

enable its R Console perspective
 Once we have enabled it, we can go to the R Console tab and issue 

R commands, e.g., install the fastICA package by entering

install.packages("fastICA")



Another example script: using ICA

 Now that we have installed the package, we can use fastICA in our R script
 First, we need to load the library into R using library(fastICA)
 Then, we may want to set up a variable specifying the number of components 

we would like to extract using ICA
– Assume we want to use as many components as there are predictor attributes in the 

input, so we can use num = ncol(rdata) – 1 for this, where ncol() gives the number of 
attributes in rdata

 To apply fastICA to the reduced Iris data and extract num components, we can 
use fastICA(rdata[1:num], num)

 This function returns a list of results, we want S, so we use fastICA(...)$S
– Check the R documenation for fastICA to see what values are returned by this function

 This will produce an R matrix, which we need to turn into an R data frame 
using the data.frame() function, so that Weka can import the data



The complete script

 The complete script for the RScriptExecutor is:

library(fastICA)
num = ncol(rdata) – 1
data.frame(fastICA(rdata[1:num], num)$S)

 Note that the output of the fastICA() function is non-deterministic
 This means the scatter plot you will get will look slightly different compared 

to the one shown in the video



Running a classifier on the transformed data

 We can visualize the resulting data using ScatterPlotMatrix
 To apply a classifier, we need to reattach the class labels to the 

transformed data
 Assume we have stored the result returned by data.frame(...)

in a variable called d, using d = data.frame(...)
 We can use cbind(d, rdata[num + 1]) to bind the columns from 

d and the class column from rdata into a single data frame 
 If this is the last line in the R script, the resulting data frame 

will be passed back into the Weka environment
 Again, we can use a dataSet connection to obtain this data



Running naive Bayes on the ICA-transformed data

 Naive Bayes assumes (conditional) independence, so it seems like a good 
candidate to run on the transformed data

 We use the standard KnowledgeFlow process for applying a cross-validation 
to a dataset to do this
– I.e., we connect RScriptExecutor to ClassAssigner, which we connect to 

CrossValidationFoldMaker, which, in turn, we connect to NaiveBayes
– Then, we connect NaiveBayes to ClassifierPerformanceEvaluator
– Finally, we establish a text connection from ClassifierPerformanceEvaluator to a 

TextViewer so that we can view the performance scores obtained

 The resulting accuracy is high, 98% on the Iris data in my case! Note that the 
outcome is non-deterministic (see above).

 Strictly speaking, this process applies semi-supervised learning because ICA is 
given the full (unlabeled) dataset



The knowledge flow for running the classifier



Further information

 Some other potentially useful transformation methods in R:
– cmdscale performs classic multidimensional scaling: data.frame(cmdscale(dist(rdata[1:num]), k = 2))

– isoMDS from the MASS package performs nonmetric multidimensional scaling (assuming the data 
has no duplicates): data.frame(isoMDS(dist(rdata[1:num]), k = 2))

– kpca from the kernlab package performs kernel (i.e., non-linear) PCA:
data.frame(rotated(kpca(~ ., data = rdata[1:num], kernel = "rbfdot", kpar = list(sigma=0.01), features = 2)))

– prcurve from the analogue package extracts principal curves: data.frame(prcurve(rdata[1:num])$s)

– isomap from the vegan package implements Isomap: plot(isomap(dist(rdata[1:num]), k = 51))

– lle from the lle package performs locally linear embeddings:
data.frame(lle(rdata[1:num], m = 2, k = 3)$Y)

 All these methods are unsupervised
– Note that the above isomap command plots data and does not create a data frame

 Care needs to be taken when applying supervised methods so that the test data is not 
used to build the transformation model!



weka.waikato.ac.nz

Pamela Douglas

Department of Psychiatry and Biobehavioral Sciences
David Geffen School of Medicine

University of California, Los Angeles
USA

Advanced Data Mining with Weka

Class 3 – Lesson 6

Application: Functional MRI Neuroimaging data



Lesson 3.6 Application: 
Functional MRI Neuroimaging data

Lesson 3.6: Application: Functional MRI Neuroimaging data

Lesson 3.1 LibSVM and LibLINEAR

Lesson 3.2 Setting up R with Weka

Lesson 3.3 Using R to plot data

Lesson 3.4 Using R to run a classifier

Lesson 3.5 Using R to preprocess data

Class 1 Time series forecasting

Class 2 Data stream mining
in Weka and MOA

Class 3 Interfacing to R and other data 
mining packages

Class 4 Distributed processing with 
Apache Spark

Class 5 Scripting Weka in Python



Application: Functional MRI Neuroimaging data

 ADHD200 Global Machine Learning Competition
– Data from Multiple sites around the globe  

 Goal: Predict Diagnosis  
– Typically Developing (TD) or ADHD

 Training Data 776 subjects with diagnosis label known
– Data from Multiple sites around the globe  
– Structural MRI, resting state functional MRI (fMRI), demographic data

 Test Data 200 Subjects – unknown diagnosis

Challenge: Classification of High Dimensional Data
Structural MRI: 100,000 voxels
Functional MRI: voxel x time

ADHD: Attention deficit hyperactivity disorder



Application:  Functional MRI Neuroimaging data

 Structural Brain Attributes were extracted using Freesurfer
 Included 9 attributes (e.g. volume) from 68 Cortical regions
 Three measures from each of the 45 subcortical and non-cortical 

regions 

Extracting Structural Brain Attributes 

More than 700 Structural Brain Attributes 



Application: Functional MRI Neuroimaging data

Resting State Functional 
Connectivity

Over 100,000 Functional Neuroimaging attributes !

Functional Modular 
Organization

Regional 
Homogeneity

Power Spectra

Independent Components



Application: Functional MRI Neuroimaging data

The Winning team used only 
demographic features!

Demographic Attributes: 
- Gender, Age, IQ , 

Handedness

 Irrelevant and Redundant Features can:
– Degrade Classification Accuracy
– Increase computational Burden 
– See also “Data mining with Weka”, Lesson 1.5

 Highlights the importance of 
feature selection

Winning team
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Application: Functional MRI Neuroimaging data

 Data from Haxby et al. (2001) “Distributed and overlapping representations of faces and objects in 
ventral temporal cortex,” Science, Vol. 293

The No Free Lunch Theorem: each classifier has its own inductive bias, therefore testing out multiple 
classifiers and selecting the best model can be a good idea

Activity: Learn how to do Nested Cross Validation for  Parameter Tuning …. Test out Multiple Classifiers, and 
Test the Importance of Using Feature Selection

• Six subjects, 12 runs each
• Each run consisted of viewing 8 object categories.
• Each object category was shown for 24 sec (500msec on, 1500msec rest).



Application: Functional MRI Neuroimaging data

 Functional MRI is high dimensional big data
 Feature Selection or regularization is highly recommended
 WEKA can easily combine multiple feature categories for 

classification (e.g. gender, age, and fMRI data) 
 Testing a variety of models or classifiers can be helpful
 Weka’s NIFTI format loader (“Brain button”)

– Loads MRI (NIFTI) files directly into WEKA for classification
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