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Abstract

Algorithms for feature selection fall into two
broad categories: wrappers that use the
learning algorithm itself to evaluate the use-
fulness of features and filters that evaluate
features according to heuristics based on gen-
eral characteristics of the data. For applica-
tion to large databases, filters have proven
to be more practical than wrappers because
they are much faster. However, most ex-
isting filter algorithms only work with dis-
crete classification problems. This paper de-
scribes a fast, correlation-based filter algo-
rithm that can be applied to continuous and
discrete problems. The algorithm often out-
performs the well-known ReliefF attribute es-
timator when used as a preprocessing step
for naive Bayes, instance-based learning, de-
cision trees, locally weighted regression, and
model trees. It performs more feature selec-
tion than ReliefF does—reducing the data di-
mensionality by fifty percent in most cases.
Also, decision and model trees built from
the preprocessed data are often significantly
smaller.

1. Introduction

Many factors affect the success of machine learning
on a given task. The quality of the data is one such
factor—if information is irrelevant or redundant, or
the data is noisy and unreliable, then knowledge dis-
covery during training is more difficult. Feature sub-
set selection is the process of identifying and removing
as much of the irrelevant and redundant information
as possible. Machine learning algorithms differ in the
amount of emphasis they place on feature selection. At
one extreme are algorithms such as the simple near-
est neighbour learner, that classifies novel examples
by retrieving the nearest stored training example, us-
ing all the available features in its distance computa-

tions. Towards the other extreme lie algorithms that
explicitly try to focus on relevant features and ignore
irrelevant ones. Decision tree inducers are examples
of this approach. By testing the values of certain fea-
tures, decision tree algorithms attempt to divide train-
ing data into subsets containing a strong majority of
one class. This necessitates the selection of a small
number of highly predictive features in order to avoid
overfitting the training data. Regardless of whether a
learner attempts to select features itself or ignores the
issue, feature selection prior to learning can be benefi-
cial. Reducing the dimensionality of the data reduces
the size of the hypothesis space and allows algorithms
to operate faster and more effectively. In some cases
accuracy on future classification can be improved; in
others, the result is a more compact, easily interpreted
representation of the target concept.

Algorithms that perform feature selection as a prepro-
cessing step prior to learning can generally be placed
into one of two broad categories. Wrapper methods
(Kohavi & John, 1997) employ—as a subroutine—a
statistical re-sampling technique (such as cross vali-
dation) using the actual target learning algorithm to
estimate the accuracy of feature subsets. This ap-
proach has proved useful but is very slow to execute
because the learning algorithm is called repeatedly.
For this reason, wrappers do not scale well to large
data sets containing many features. Filter methods,
on the other hand (Kohavi & John, 1997), operate
independently of any learning algorithm—undesirable
features are filtered out of the data before induction
commences. Filters typically make use of all the avail-
able training data when selecting a subset of features.
Some look for consistency in the data—that is, they
note when every combination of values for a feature
subset is associated with a single class label (Almual-
lim & Dietterich, 1991). Another method (Koller &
Sahami, 1996) eliminates features whose information
content is subsumed by some number of the remaining
features. Still other methods attempt to rank features
according to a relevancy score (Kira & Rendell, 1992).



Filters have proven to be much faster than wrappers
and hence can be applied to large data sets contain-
ing many features. Because they are more general
they can be used with any learner, unlike the wrap-
per, which must be re-run when switching from one
learning algorithm to another. However, most filter
algorithms work only on discrete class problems, un-
like the wrapper, which can be “wrapped” around any
continuous or discrete class learner.

This paper presents a new approach to feature selec-
tion, called CFS (Correlation-based Feature Selection)
that uses a correlation based heuristic to evaluate the
worth of features. The algorithm is simple, fast to ex-
ecute and extends easily to continuous class problems
by applying suitable correlation measures. The next
section discusses related work. Section 3 describes the
CFS algorithm. Section 4 describes the application
of CFS to discrete class problems and presents ex-
perimental results comparing CFS to ReliefF as pre-
processors for learning algorithms. Section 5 explains
how the algorithm is extended to cope with continu-
ous class problems and presents experimental results
comparing CFS and ReliefF' on continuous class data
sets. The last section summarizes the findings.

2. Related Work

While wrapper feature selection can be applied to re-
gression problems with relative ease, few filter algo-
rithms handle continuous class data. The only excep-
tion is RReliefF (Regressional Relief) (Robnik-Sikonja
& Kononenko, 1997), which is an extension of Kira
and Rendell’s (1992) Relief algorithm for classification
problems. The Relief algorithms are quite different to
the algorithm described in this paper in that they score
(and hence rank) individual features rather than scor-
ing (and hence ranking) feature subsets. To use Relief
for feature selection, those features with scores exceed-
ing a user-specified threshold are retained to form the
final subset.

Relief works by randomly sampling an instance and
locating its nearest neighbour from the same and op-
posite class. The values of the attributes of the near-
est neighbours are compared to the sampled instance
and used to update the relevance scores for each at-
tribute. This process is repeated for a user specified
number of instances m. The rationale is that a useful
attribute should differentiate between instances from
different classes and have the same value for instances
from the same class. Relief was originally defined for
two-class problems (Kira & Rendell, 1992) and was
later extended (ReliefF) to handle noise and multi-
class data sets (Kononenko, 1994). ReliefF smoothes

the influence of noise in the data by averaging the
contribution of k£ nearest neighbours from the same
and opposite class of each sampled instance instead of
the single nearest neighbour. Multi-class data sets are
handled by finding nearest neighbours from each class
that is different from the current sampled instance and
weighting their contributions by the prior probability
of each class. Robnik-Sikonja and Kononenko (1997)
describe RReliefF, an extension of ReliefF to handle
regression problems. The algorithm is essentially the
same as ReliefF, but instead of requiring exact knowl-
edge of whether two instances belong to the same class
or not, it estimates a probability based on the distance
between the class values of the two instances.

The implementation of ReliefF used for the experi-
ments reported in this paper encompasses both ReliefF
and RReliefF and from here-on is referred to simply
as ReliefF. Kononenko (1994) notes that the higher
the value of m (the number of instances sampled),
the more reliable ReliefF’s estimates are—though of
course increasing m increases the running time. For
all experiments, we set m = 250 (Robnik—Sikonja
& Kononenko, 1997). For the discrete class experi-
ments, k was set to 10 (Kononenko, 1994). For the
numeric class experiments, we used the same parame-
ter settings as Robnik-Sikonja and Kononenko (1997):
m = 250, k = 200 and o = 20 (a parameter that con-
trols the exponential decrease in influence for more
distant neighbours).

3. CFS: Correlation-based Feature
Selection

Unlike ReliefF, CFS evaluates and hence ranks feature
subsets rather than individual features. This section
describes the CFS algorithm.

3.1 Feature Evaluation

At the heart of the CFS algorithm is a heuristic for
evaluating the worth or merit of a subset of features.
This heuristic takes into account the usefulness of in-
dividual features for predicting the class label along
with the level of intercorrelation among them. The
hypothesis on which the heuristic is based is:

Good feature subsets contain features highly correlated
with the class, yet uncorrelated with each other.

In test theory (Ghiselli, 1964), the same principle is
used to design a composite test (the sum or average
of individual tests) for predicting an external variable
of interest. In this situation, the “features” are indi-
vidual tests which measure traits related to the vari-



able of interest (class). For example, a more accurate
prediction of a person’s success in a mechanics train-
ing course can be had from a composite of a number
of tests measuring a wide variety of traits (ability to
learn, ability to comprehend written material, man-
ual dexterity and so forth), rather than from any one
individual test which measures a restricted scope of
traits.

Equation 1 (Ghiselli, 1964) formalizes the heuristic:

kror

Merity =
k+k(k—1)75r

(1)

where Meritg is the heuristic “merit” of a feature sub-
set S containing k features, 7c; the average feature-
class correlation, and 77y the average feature-feature
intercorrelation. Equation 1 is, in fact, Pearson’s cor-
relation, where all variables have been standardized.
The numerator can be thought of as giving an indi-
cation of how predictive a group of features are; the
denominator of how much redundancy there is among
them. The heuristic handles irrelevant features as
they will be poor predictors of the class. Redundant
attributes are discriminated against as they will be
highly correlated with one or more of the other fea-
tures. Because attributes are treated independently,
CFS cannot identify strongly interacting attributes
such as in a parity problem. However, it has been
shown that it can identify useful attributes under mod-
erate levels of interaction (Hall, 1998).

3.2 Searching the Feature Subset Space

The purpose of feature selection is to decide which
of the initial (possibly large) number of features to
include in the final subset and which to ignore. If
there are n possible features initially, then there are 2"
possible subsets. The only way to find the best subset
would be to try them all—this is clearly prohibitive
for all but a small number of initial features.

Various heuristic search strategies such as hill climb-
ing and best first (Kohavi & John, 1997) are often ap-
plied to search the feature subset space in reasonable
time. CFS first calculates a matrix of feature-class and
feature-feature correlations from the training data and
then searches the feature subset space using a best first
search. Best first search was used in the final exper-
iments as it gave slightly better results in some cases
than hill climbing. The best first search starts with
an empty set of features and generates all possible sin-
gle feature expansions. The subset with the highest
evaluation is chosen and expanded in the same man-
ner by adding single features. If expanding a subset

results in no improvement, the search drops back to
the next best unexpanded subset and continues from
there. Given enough time a best first search will ex-
plore the entire feature subset space, so it is common
to limit the number of subsets expanded that result
in no improvement. The best subset found is returned
when the search terminates. CF'S uses a stopping crite-
rion of five consecutive fully expanded non-improving
subsets.

3.3 Locally Predictive Features

Because correlations are estimated globally (over all
training instances), CFS tends to select a “core” sub-
set, of features that has low redundancy and is strongly
predictive of the class. In some cases however, there
may be subsidiary features that are locally predictive
in a small area of the instance space. Some machine
learning algorithms are able to make use of locally pre-
dictive features and in these situations CFS has been
shown to degrade their performance somewhat (Hall,
1998). The version of CFS used in the experiments de-
scribed in this paper includes a heuristic to include lo-
cally predictive features and avoid the re-introduction
of redundancy. After the feature subset space has been
searched, the remaining unselected features are exam-
ined one by one to determine whether they are likely to
be useful on a local rather than global basis. A feature
will be admitted to the subset if its correlation with
the class is higher than the highest correlation between
it and any one of the already selected features.

4. Applying CF'S to Discrete Class Data

In order to apply Equation 1 to estimate the merit of
a feature subset, it is necessary to compute the corre-
lation (dependence) between attributes. For discrete
class problems, CFS first discretises numeric features
using the technique of Fayyad and Irani (1993) and
then uses symmetrical uncertainty (a modified infor-
mation gain measure) to estimate the degree of asso-
ciation between discrete features (Press et al., 1988):

H(X)+ H(Y)—H(X,Y)

SU = 2.0 x B £ 50X (2)

Symmetrical uncertainty is used (rather than gain ra-
tio) because it is a symmetric measure and can there-
fore be used to measure feature-feature correlations
where there is no notion of one attribute being the
“class” as such.

To handle missing data values in an attribute, CFS
distributes their counts across the represented values
in proportion to their relative frequencies.



In order to evaluate the effectiveness of CFS as a
global feature selector for common machine learning
algorithms, experiments were performed using sixteen
standard data sets from the UCI collection (Blake,
Keogh & Merz, 1998). The data sets and their char-
acteristics are listed in Table 1. We also ran Reli-
efF with three relevance threshold settings: 0.0, 0.05,
and 0.1. All features with a relevance score less
than the specified threshold were removed (Kohavi
& John, 1997). Three machine learning algorithms
representing three diverse approaches to learning were
used in the experiments—a probabilistic learner (naive
Bayes), a decision tree learner (C4.5 release 8) and
an instance-based learner (kNN'). The percentage of
correct classifications, averaged over ten ten-fold cross
validation runs, were calculated for each algorithm-
data set combination before and after feature selec-
tion. For each train-test split, the dimensionality was
reduced by each feature selector before being passed
to the learning algorithms. In the case of CFS, a dis-
cretized copy of each training split was made for it to
operate on. The same folds were used for each feature
selector—learning scheme combination.

Table 1. Discrete class data sets.

Data Set Instances Num. Nom. Classes
1 glass-2 163 9 0 2
2 anneal 898 6 32 5
3 breast-c 286 0 9 2
4 credit-g 1000 7 13 2
5 diabetes 768 8 0 2
6 horse colic 368 7 15 2
7 heart-c 303 6 7 2
8 heart-stat 270 13 0 2
9 ionosphere 351 34 0 2
10 labor 57 8 8 2
11 lymph 148 3 15 4
12 segment 2310 19 0 7
13 sick 3772 7 22 2
14 soybean 683 0 35 19
15  vote 435 0 16 2
16  zoo 101 1 15 7

Tables 2, 3 and 4 summarize the results of feature
selection with naive Bayes, C4.5 and instance based
learning respectively?. The tables show how often
the method in a column significantly outperforms the
method in a row. Figure 1 shows the number of fea-
tures selected by ReliefF (thresholds 0 and 0.01) and
by CFS as well as the number present in the full data
set. Throughout we speak of results being significantly
different if the difference is statistically significant at

!The implementation of k-nearest neighbour used here
sets k by cross validation on the training data.
2Full results are given in Table 9 at the end of the paper.

Table 2. Results of paired t-tests for naive Bayes.

NB CFS RIf RIf0.01 RIf0.05 RIf0.1

NB - 6 1 4 4 5
CFS 4 - 4 5 3 4
RIf 0 5 - 2 4 5
RIf0.01 1 5 1 - 4 4
RIf0.05 7 9 7 9 - 5
RIf0.1 10 12 10 11 5 -

Table 3. Results of paired t-tests for C4.5. Figures in
braces show the number of times method in column results
in a smaller tree than method in row.

C45 CFS RIf RIf0.01 RIf0.05 RIf0.1

C5 - {9y 0{2} 1{6} 3{ii} 0{10}
CFS 3 {0} - 3{0} 3{1} 4{7} 2{10}
RIf 0 {1} 5{9} - 1{3} 4{9% 2{11}
RIf0.01 1{2} 2{11} 1{0} - 3 {11} 2 {11}
RIf0.05 5 {2} 8{4} 5{1} 5{1} - 2 {9}

RIf0.1 13 {2} 11 {3} 11 {1} 13 {2} 8 {2} -

the 1% level according to a paired two-sided ¢ test.

From Tables 2, 3 and 4 it can be seen (by looking at
the first row and second column) that CFS maintains
or improves the accuracy of each learning scheme more
often than not. Accuracy of naive Bayes is improved
for six data sets and degraded on four. Accuracy of
both C4.5 and IBk is improved for four data sets and
degraded for three. On the remaining data sets for
each learning scheme there is no change in accuracy
after feature selection by CFS. When looking at the
tree sizes for C4.5 (figures in braces in Table 3) it can
be seen that CFS never increases the size of C4.5’s
trees and reduces tree size significantly on nine of the
sixteen data sets.

ReliefF (with a relevance threshold of 0) results in no
significant difference in accuracy for all three learning
schemes on all data sets—the sole exception being an
improvement for naive Bayes on glass-2. The explana-
tion for this can be seen from Figure 1. ReliefF using
a threshold of 0 performs very little feature set re-
duction. The largest reductions are for glass-2, anneal
and sick; on the remainder of the data sets the number
of features is reduced by only 2.6% on average. UCI
data sets have been (for the most part) quite carefully
engineered—that is domain experts have constructed
features that they expect to be useful for predicting
the class. Since Relief is very effective at identifying
irrelevant attributes it is not surprising that most at-
tributes are retained; especially since it is well known
that Relief does not identify redundant attributes (Kira
& Rendell, 1992).



Table 4. Results of paired t-tests for IBk.

IBk CFS RIf RIf0.01 RIf0.05 RIf0.1

1Bk - 4 0 3 2 3
CFS 3 - 3 3 1 0
RIf 0O 4 - 3 2 3
RIf0.01 1 4 0 - 3 3
RIf0.05 6 6 7 6 - 2
RIf0.1 11 10 11 11 9 -

From Figure 1 it can be seen that CFS is a more ag-
gressive feature selector than ReliefF. CFS reduces the
number of features by 47% on average while maintain-
ing or improving accuracy in most cases. This sug-
gests that while the majority of attributes are useful
for predicting the class, only a small subset are nec-
essary in practice for generating an accurate model.
Similar findings have been reported elsewhere, for ex-
ample (Kohavi & John, 1997).

Tables 2, 3 and 4 show that using a threshold of 0.01
with ReliefF generally gives good results for all three
learning algorithms. Although resulting in more fea-
ture set reduction, increasing the threshold beyond
0.01 leads to a substantial decrease in accuracy. From
Figure 1 it can be seen that ReliefF selects fewer at-
tributes with a threshold of 0.01 than with a threshold
of 0, but CFS selects significantly fewer attributes than
both on all data sets except diabetes.

number of features

0 2 4 6 8 10 12 14 16
dataset

Figure 1. Average number of features selected by ReliefF
with threshold 0 (left), ReliefF with threshold 0.01 (center)
and CFS (right) on discrete class data sets. All differences
between CFS and ReliefF are significant at the 1% level.
Crosses show the original number of features in each data
set.

5. Applying CFS to Continuous Class
Data

For continuous class data the obvious measure for esti-
mating the correlation between attributes in Equation
1 is standard linear (Pearson’s) correlation. This is
straightforward when the two attributes involved are
both continuous:

rxy = 5 (3)

where X and Y are two continuous variables expressed
in terms of deviations.

When one attribute is continuous and the other dis-
crete, a weighted Pearson’s correlation is calculated as
shown in Equation 4. Specifically, for a discrete at-
tribute X and a continuous attribute Y, if X has k
values, then £ binary attributes are correlated with Y.
Each of the i = 1,...,k binary attributes takes value
1 when the ith value of X occurs and 0 for all other
values. Each of the i = 1, ..., k correlations calculated
is weighted by the prior probability that X takes value
i.

k
XY = ZP(X = T)rx, v, (4)
=1

where Xj; is a binary attribute that takes value 1 when
X has value z; and 0 otherwise.

When both attributes involved are discrete, binary at-
tributes are created for both and all weighted correla-
tions are calculated for all combinations as shown in
Equation 5.

koL
rxy =3 ) X =2.,Y =y)rx,y, (5

i=1 j=1

In this approach to calculating correlations, CFS re-
places any missing values with the mean for continuous
attributes and the most common value for discrete at-
tributes.

Experiments on continuous class data follow a simi-
lar methodology to that described in Section 4 for the
discrete case. The only difference is that features do
not need to be discretised before being passed to CFS.
Nineteen continuous class data sets and their prop-
erties are listed in Table 5 (Frank, Trigg, Holmes &
Witten, in press).

Three learning algorithms (close analogs of those used
in the discrete class experiments) capable of learn-



Table 5. Numeric class data sets.

Data Set Instances Num. Nom
1 autoHorse 205 17 8
2 autoMpg 398 4 3
3 autoPrice 159 15 0
4 bodyfat 252 14 0
5 breastTumor 286 1 8
6 cholesterol 303 6 7
7 cloud 108 4 2
8 cpu 209 6 1
9 echoMonths 131 6 3
10 fishcatch 158 5 2
11 housing 506 12 1
12 hungarian 294 6 7
13 lowbwt 189 2 7
14  pharynx 195 1 10
15 meta 528 19 2
16 pbc 418 10 8
17 quake 2178 3 0
18 servo 167 0 4
19  veteran 147 3 4

Table 6. Results of paired t-tests for naive Bayes for regres-
sion.

NBR CFS RIf

NBR - 9 8
CFS 1 - 2
RIf 2 4 -

ing in continuous class problems were used in the ex-
periments: naive Bayes for regression (Frank, Trigg,
Holmes & Witten, in press) (NBR), model trees (Wang
& Witten, 1997) (M5'), and locally weighted regres-
sion (Atkeson, Moore & Schaal, 1997) (LWR). Naive
Bayes for regression employs Gaussian kernel density
functions to estimate conditional probabilities. Model
trees are the counterpart of decision trees for regres-
sion tasks. They have the same structure as decision
trees but employ linear functions at each leaf node in
order to predict continuous values. Locally weighted
regression is a technique that combines instance based
learning and linear regression—a surface is fitted to
neighbours of a target point using a distance weighted
regression.

Tables 6, 7 and 8 summarize the results of feature se-
lection with naive Bayes for regression, model trees,
and locally weighted regression respectively®. The ta-
bles show how often the method in a column outper-
forms the method in a row. In this case, the measure
of performance is the relative root mean squared er-
ror (RRSE). The relative root mean squared error of
a method is its root mean squared error normalized

3Full results are listed in Table 10 at the end of the
paper.

Table 7. Results of paired t-tests for M5’. Figures in braces
show the number of times method in column produces
fewer linear models than method in row.

M5’ CFS RIf

M5 - 5{8) 3{7]
CFS 4{2} - 3 {3}
RIf 2{2} 3{2} -

Table 8. Results of paired t-tests for LWR.

LWR CFS RIf

LWR - 8 8
CFS 4 - 6
RIf 7 4 -

by the root mean squared error of the sample mean?.

Thus, lower values for RRSE are better and a method
that performs worse than the mean has a relative root
mean squared error of more than 100. Figure 2 shows
the number of features selected by ReliefF and CFS as
well as the number present in the full data set.

25
20 | ’ ]
%] *
]
3
© 15 g p
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< *
. nr “ Al
0 5 10 15 20
dataset

Figure 2. Average number of features selected by ReliefF
(left) and CFS (right) on numeric class data sets. All dif-
ferences between CF'S and ReliefF are significant except for
cloud (7), cpu (8), quake (16) and pharynx (19). Crosses
show the original number of features in each data set.

Again—as in the discrete class case—CFS improves
the accuracy of each learning scheme more often than
not. For naive Bayes, accuracy is improved on nine
data sets and decreased on only one. For M5’, accu-
racy is improved on five data sets and decreased on
four. For locally weighted regression, accuracy is im-
proved on eight data sets and decreased on four. On
the remaining data sets for each learning scheme there
is no significant change in performance. Like C4.5,

4The sample mean is computed from the test data.



M5’ produces a structure that can be interpreted. The
number of linear models produced by M5’ is related to
the size of the tree. From Table 7 it can be seen that
CFS reduces the number of linear models produced
by M5’ for eight out of the nineteen data sets and in-
creases the number of linear models produced on two
data sets.

ReliefF (with relevance threshold of 0) performs more
feature selection on the numeric class data sets (as can
be seen from Figure 2) than on the discrete class data
sets, though not as much as CFS. ReliefF and CFS
reduce the feature sets on average by 42% and 54%
respectively. This indicates that there are more irrele-
vant attributes in these problems than in the discrete
class data sets. From Tables 6, 7 and 8 (third column)
it can be seen that, due to increased feature set reduc-
tion, there are more cases in which learning scheme’s
accuracy is changed significantly by ReliefF than there
was for the discrete class data sets. For naive Bayes,
accuracy is improved on eight data sets and decreased
on two. For M5, accuracy is improved on three data
sets and decreased on two. ReliefF reduces the num-
ber of linear models produced by M5’ on seven data
sets and increases the number of linear models on two
data sets. For locally weighted regression, accuracy is
improved on eight data sets and decreased on seven.

When CFS and ReliefF are compared (columns 2 and
3 in Tables 6, 7 and 8), it can be seen that the two
methods perform comparably. For naive Bayes, CFS
is better than ReliefF on four data sets and worse on
two. For M5’, each method is better than the other on
three data sets. For locally weighted regression, CFS
is better than ReliefF on four data sets and worse on
six.

6. Conclusions

This paper has presented a new correlation-based ap-
proach to feature selection (CFS) and demonstrated
how it can be applied to both classification and regres-
sion problems for machine learning. CFS uses the fea-
tures’ predictive performances and intercorrelations to
guide its search for a good feature subset. Experiments
on discrete and continuous class data sets show that
CF'S can drastically reduce the dimensionality of data
sets while maintaining or improving the performance
of learning algorithms. Compared to ReliefF, CFS re-
sults in greater dimensionality reduction on both dis-
crete and numeric class problems and performs compa-
rably with respect to the accuracy of learning schemes
using the reduced feature sets. Based on these results
it can be concluded that CFS shows promise as a prac-
tical feature selector for machine learning algorithms.
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Table 9. Experimental results: discrete class data sets

Data Set NB CFS RIf0.01 | C4.5 CFS RIf0.01 | IBk CFS RI1f0.01
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breast-cancer 72.81  72.90 72.79 73.46  73.76 73.03 72.62 72.18 72.88
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heart-statlog  84.00 83.81 84.22 76.88 79.170 77.13 81.70 79.89 ¢ 80.74 e

ionosphere 82.61 88.63 0 82.61 90.71  90.99 90.16 89.63  89.56 89.60

labor 94.57 86.98 ¢ 93.37 84.16 86.90 o 84.16 90.13 82.30 ¢ 93.10

lymph 83.27 80.95 e 83.08 75.34  74.28 74.84 80.78  80.92 81.67

segment 80.01 81.28 0 83.320 | 96.46 96.63 96.63 97.20 97.19 97.22

sick 92.70 9448 0 94.18 0 | 98.73 97.49 e 97.87 e | 96.09 96.12 96.47 o

soybean 92.84 9194 e 92.72 91.89 90.66 ¢ 91.80 91.41 90.52 ¢ 91.37

vote 90.04 94.00 o  90.04 96.37 95.52 e 96.37 92.52 94.67 o 92.25

700 95.58 94.59 ¢ 95.58 92.83 93.17 92.24 95.07 95.38 95.07

o,e statistically significant improvement or degradation
Table 10. Experimental results: numeric class data sets

Data Set NBR CFS RIf M5’ CFS RIf LWR CFS RIf
autoHorse 39.17 40.88 39.78 e | 33.32 33.31 31.95 24.79 27.46 24.02
autoMpg 45.26 45.26 45.19 35.67 35.67 35.66 33.28 33.28 33.65
autoPrice 43.53 40.59 43.57 39.82 37.38 o 38.67 40.69 40.17 40.76
bodyfat 26.08 13.61 o 21.52 o | 11.15 10.72 o 11.24 11.91 10.66 o 11.22 o
breastTumor 131.10 128.31 o 122.63 o | 97.29 97.76 99.03 e | 103.06 102.19 0 99.23 o
cholesterol 114.45 109.91 112.71 101.62 100.15 o  100.15 103.89 99.34 o 100.45 o
cloud 54.22 48.59 o 50.72 o | 38.36 37.55 38.16 41.09 39.23 o 40.00 o
cpu 34.58 290.33 o 29.33 o | 21.23 16.12 o 16.35 o | 21.99 19.53 o 19.53 o
echoMonths 96.93 81.54 o 7534 o | 72.15 72.11 71.94 68.04 69.82 70.10 e
fishcatch 32.16 29.15 o 32.31 16.23 18.77 e 16.45 22.45 30.69 e 2351 e
housing 64.46 48.30 o 5830 o | 39.84 46.20 41.11 39.93 48.29 e 43.40 e
hungarian 79.51 81.75 80.61 73.79 73.24 73.22 68.60 72.10 e 70.74 e
lowbwt 73.31 71.88 73.06 62.00 61.27 60.95 o | 62.66 63.36 61.75 o
meta 152.87 141.41 o 176.00 150.68  180.39 172.71 160.32 141.39 0 135.76 o
pbc 97.76 100.10 97.47 80.83 85.26 e 82.28 81.38 86.60 e 83.23 e
pharynx 98.39 93.34 92.77 o | 105.87 71.53 o 82.64 o | 11805 7425 o &81.99 o
quake 140.07 136.99 o 137.76 o | 99.96 99.87 100.02 99.76 99.79 99.93 e
Servo 93.60 97.40 e 104.84 e | 37.92 41.15 e 65.15 e | 38.81 39.04 65.19 e
veteran 94.21 95.20 104.28 90.53 90.86 90.66 97.77 93.66 o 95.66

o,e statistically significant improvement or degradation



